LWCOM-17K Family
4-Bit CMOS Microcomputer
Development Tools

User's Manual

Contents Page

AS 17K Assembler User's Manual

INEPOAUCHION. ...ttt et s ean 1-1- 1
Part | Languages

1. AR OULHINE. ...t 1-1- 1
1.1 An outline of the assembler.........cccocvvrvrecirieceeeece e 1-1- 1
1.1.1 What is @an assembler.ccccoueeeeeeciereereeree e 1-1- 1
1.1.2 What is an absolute assembler.ccocoerveerieicercerereneieenaes 1-1- 1
1.1.3 What is a relocatable assembler.ccccceververveencenriernnnne 1-1- 2
1.1.4 The system development sequence for the uPD17000. 1-1- 3
1.1.5 A comparison of assemblersc.cccemreeceecrcennnenceeeceennees 1-1- 4

1.2 An overview of the functions of the uPD17000ccovvecervernerrcrennne 1-1- 6
1.2.1 Generating sequence filesccoeeeeerevererreerieseeee s 1-1- 6
1.2.2 Generating source module filescccoevrveecercercenreecee e, 1-1- 6
1.2.3 ASSEMDIING . ..ooiiiiiieiee ettt st 1-1- 8

1.3 Before beginning program developmentccocoeeeeereneccercceneeieeennn 1-1-10
1.3.1 Roestrictions on symbolsccccevvvieceveeveeceeceeee e 1-1-10
1.3.2 Restrictions on direCtivesccceceeveeeereceieeeieceeeeeecee e 1-1-11
1.3.3 Similar reserved WOrdScocoeeuieeeeeeiveceieeeeeeeeeeceeeeeeeeeenene 1-1-12
1.3.5 Setting the time and date of the hostc..cccevvereeeeiiiiennne 1-1-15
1.3.6 Restrictions on the number of source modules 1-1-15

1.4 Features of the @ssembler..............c.c...coeeiiveieeeeeeeeeeeeee e 1-1-16
1.4.1 PC-DOS aSSEMDIEFSccevveveerrercrereeeerereeeteeeeeee et 1-1-16
1.4.2 Capacities for program modularisationcccccceeerererenvenenen. 1-1-16
1.4.3 Convenient built-in macro instructionsc..cceeveeeveeeeccrneee. 1-1-16
1.4.5 The documentation generation functioncccceveueeveeenee. 1-1-17
1.4.6 Two types of cross reference functionccceeeeeeeeeevevennnn.n. 1-1-17
1.4.7 The assemble report fUNCHONcocvveeeeeeeeeeeeeeeeeereenns 1-1-18
1.4.8 The automatic object load functionccceeeveeveeeceeeeeeeeeeennn. 1-1-18
1.4.9 Source program hierarchy creation.ccceeevvevevveeeeeeeeeeeenne, 1-1-18

2. Methods of entering source programscccccoooovvovevennn..... 1-2- 1
2.1 The basic operations of SOUICe Programs...........ccoeeeeeeeeeeeeeeevesseennns 1-2- 1
2.2 The structure of StatemMeNtS...............ccueveeveeeeeeeeeeeeeee e eeeeerees s 1-2- 2
2.3 The tabulation fUNCHONccueeuccuiveeecceeeeee et 1-2- 4
2.4 The Character Setcccoeveeeeecieiieee e e e e e eeesee s e ees e 1-2- 5
241 Alphanumeric Characterscccoeveeeveeveeeseeseeeeeeeseereseenenns 1-2- 5
2.4.2 Numeric Charactersooueeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeea. 1-2- 5
2.4.3 The use of special charactersocooweeeveeeeeeeeeeeeeesnn, 1-2- 6

2.5 The symbol columncccciiiiiiiiiiiiiice e 1-2- 8
2.5.1 Symboltypesccociimiiicieriie 1-2- 9
2.5.2 Rules for entering Symbolsccccceceeriiiiiciriiniienennnneeeeees 1-2- 9

2.6 The MNemoniC COIUMNcccevriiirererererrerrreereeemrersrr s e e s rsneseseesssesssenas 1-2-12

2.7 The operand COIUMNcccceriiuiiriiiiicniee e cane s csessesa s e sssssanasaas 1-2-13
2.7.1 Entry format for the operand fieldccoovnrrniriinirninicnnnns 1-2-13

2.8 The comment COIUMNcciiiiriiiecier et 1-2-17

2.9 Expressions and Operatorsccccccvceveeriecncnneeniisneneee e 1-2-18
2.9.1 EXPreSSIONS . .cciiieeeeiiieiiereiieeeeeersessereserassssessssssssssesssssessssnnsssss 1-2-18
2.9.2 Anoutline of Operatorscccccevvveerncrerressecssecnsssesse e 1-2-22
2.9.3 Arithmetic Operatorsccceccvvereircvreeieeenccseessscesseeeee s ssssreees 1-2-23
b2Je I S WoTo To7- 1 o] o =T = | Lo £ SN 1-2-28
2.9.5 Comparative Operatorsc.ccccceeeeerecrersrsessiseensesseeneissnensssnens 1-2-32
2.9.6 Shift OPEratorscccceveverrerereeirierrrreerree e eessees 1-2-38
2.9.7 Other operatorscccccceeereererereeerseeenessereeesssescssseessssessssesssnens 1-2-42

P2 L O SIU T o Tex (o] 4 T P 1-2-43
2.10.1 Type conversion functionscc.cccevereiiciinienininiiienenen cceeeen. 1-2-43
2.10.2 Location counter functionscoccccveiiiiieerinininnenceccnccinnenen. 1-2-46

2.11 Variables used when assemblingcccoovevriniinniinnenseensenecenncnenne 1-2-47
P2 b O 7 4 o SRRt 1-2-47
2.141.2 ZZZSKIP . ettt ser st an e ns 1-2-49

. Directives and control instruction 1-3- 1
3.1 An outline of virtual instructions and control instructions 1-3- 1
3.2 Virtual inStrUCtiONSccvviiieeiieieneccecciec e nne e 1-3- 2
3.2.1 The location counter control directivec...ccccvveueeevicneeicnenn. 1-3- 2
ORG

3.2.2 Symbol definition directivesccocccerreiereiii i 1-3- 4
DAT
MEM
FLG
LAB
SET

3.2.3 Public definition and reference directivescccccecveereveerinne 1-3-17
PUBLIC, BELOW-ENDP
EXTRN

3.2.4 Data definition direCtivesc.coccvceeeiiciinreeeeeecccceereeses e cneees 1-3-22
Dw, DB

3.3

3.4

3.25

3.2.6

3.2.7

3.2.8

3.29

Page

Assemble directives with conditionscccceeeeeecercceenenneeerennnnes 1-3-26
IF, ELSE, ENDIF

CASE, EXIT, OTHER, ENDCASE

lteration dir@CtiVESccccoivreeeeeeeirreeerrereeeeeeeeeeeereeeneeeeeeesnene 1-3-32
REPT, ENDR

IRP, ENDP

EXITR

The macro definition directiveccoovivevevveircervireeeeeee e 1-3-39
MACRO-ENDM

The symbol global declaration directive in macros 1-3-41
GLOBAL

The assemble terminate directivecocceeeeeereereeneeeecsreeenenne 1-3-43
END

CoNtrol INSIIUCHONSueieiiieceie ettt eteeeee e ee e e e e s e eeeesnsenannn 1-3-45

3.3.1

3.3.2

3.3.3

3.34

Output list control inStructionsccccceeveevereceeeeeerreesseeeeennees 1-3-46
TITLE

EJECT

LIST

NOLIST

SFCOND

IFCOND

C14344

C4444

Macro development print control instructionsccccceceeuenen. 1-3-60
SMAC

NOMAC

OMAC

LMAC ,

Source input control iNStructionsceeveersessersseeesersnnennnn. 1-3-66
INCLUDE

EOF

Document generation control instructionscccveeeennsennenns 1-3-71
SUMMARY

;, (TAG)

[V F= Tod (o (1] o1 { o] o =S ORI 1-3-75

3.4.1
3.4.2
3.4.3
3.44

Macro definitionccceviiiiiiiiieeecc e raen e e s anes 1-3-75
LV E= Tl (o I (=1 (=T =1 o Vo = SRR 1-3-76
MacCro eXpanSIioNcceeeeiiinieiiistiieisessee s sreseseresssnesssnnanas 1-3-78
Examples of the use of Macros.ccceevvrreevercrnnnisessenseenne 1-3-79

3.5 Document generation functionscccecvenniinicnenicnincecsenseene 1-3-85
3.5.1 Program SUMMATYcccceeerrumreinessessnesnessnnsnsssesssssssassssassssessns 1-3-86
3.5.2 Module SUMMATYcccceriiiemiiiiniierne e 1-3-87
3.5.3 Routine SUMMATYccccevimtririinininiincie e 1-3-87
3.5.4 EXAMPIES . .eerererrrerricneriniinre s ne e e 1-3-90
3.5.5 Table of contents generation functionccecceeineinnieinnines 1-3-91

4. Built-in macro directives 1-4- 1
4.1 An overview of the built-in macro directives.........cecceveuerninieniinnnnnns 1-4- 1
4.2 Built-in macro direCtivesceeeveeveveirciiieinneniiienn s 1-4- 2

SKTn, SKFn
SETn, CLRn
NOTn
INITFLG
BANK

Part Il Operations

1. Anoutlineoftheproduct ... 1-5- 1
1.1 Details of the productccocceeeiiiniiiniiine e 1-5- 1
1.2 System configuration..........cccceeeeecririinnnricn 1-5- 1

2. Before eXeCUtiNg ... 1-6- 1
2.1 Making backup fileScccuveeevirrrierrieireeceer 1-6- 1
2.2 Introduction to the sample programccccceeveveeiemeciinnnnneesseenneens 1-6- 3
2.3 Procedures for assembling the sample programscccccvvuereeenneen. 1-6- 4

3. Sequencefiles 1-7- 1
3.1 AN OULHNG e 1-7- 1
3.2 Sequence file entry formatscccceeveriiinininin e 1-7- 2

3.2.1 Total entry formatsccceereveiiiiiiiiiiinnec 1-7- 2
3.2.2 Device file name entry formatsccoooeevemremiiiein 1-7- 3
3.2.3 Assemble option entry formatsccccevveveeeieiiiiiciniinie 1-7- 4
3.2.4 Source file name entry formatsccccovveeeiiiiniereiienencn 1-7- 5
3.3 Sequence file generation methods..........cccccevviviiiiiiiniiiciciiicceeeee, 1-7- 6

1\

4. Assembler funClioNns . ..o 1-8- 1
4.1 OULIING ettt 1-8 1
4.2 Assembler input/output filescocevevvciiniiiiiini 1-8-2
4.3 Assembler fUNCONSccoeiiiinrereerercerer e 1-8-5

4.3.1 The interim object module file output function 1-8-5
4.3.2 The link functioncccciiiii e 1-8-5
4.3.3 HEKX file and PROM file output functionsccceevvmmeeevnnnnns 1-8-5
4.3.4 Functions which reduce the assemble timeccccueeenne 1-8-6
4.3.5 The assembile list output functioncccccceeeriiieiiiiiinencennnnen. 1-8-8
4.3.6 The cross-reference list file output functionccccceeeeveneenne. 1-8-8
4.3.7 The document file output functionc.ccccoeeeveeeiiiiiiiiiiiiins 1-8-8
4.3.8 The memory map file output functionccceeeiieciiiiiiiiiiiiinnens 1-8-8
4.3.9 The report file output fuNCtioncccceoeeiiiiieciiiiiiiiies 1-89
4.4 Methods of starting up the assemblerccocovvieveereceienicciceeeenne 1 -8-11
4.4.1 Files which must be input when starting up the assembler 1 -8-11
4.4.2 Convenient input filescccovvuirieiceinecceecee e 1 -8-11
4.4.3 Methods of booting up the assemblercccocceeeveinciieennnnns 1-8-12
4.4.4 Halting during assemblycccoviriiiiiiine e 1 -8-19
4.5 ASSEMDbIE OPHONSeeviriiiiiiiee ettt 1- 8-20
4.5.1 The object file output control optionc.cccevvceeveriieecrecririene 1- 8-23
4.5.2 The assembile list file output control optioncccvveveeeennenn.. 1- 8-25
4.5.3 The cross-reference list file output control option 1- 8-27
4.5.4 The error skip control Optionccecceeeeveereiciienriiieeeee e, 1- 8-29
4.5.5 The list output page row number control option 1- 8-30
4.5.6 The macro iteration directive development control option 1- 8-31
4.5.7 The list output column number control optioncceeue.ee 1- 8-32
4.5.8 The automatic load control optioncccceccevvvveerecrerreeeeeccne. 1- 8-33
4.5.9 The conditional statement output control option 1- 8-34
4.5.10 The optional data output control optionccceceeveviveeecnenns 1- 8-35
4.5.11 The data memory map file output control option 1- 8-36
4.5.12 The document file output control optioncccceecveeerieeeennnnee. 1- 8-38
4.5.13 The report file output control optioncccceeeerecerveeeennnnnen. 1- 8-40
4.5.14 The buried cross reference output control option 1- 8-42
4.5.15 The program name output control optionc.cccceevveeverneennn. 1- 8-44
4.5.16 The tab control Optionccecvieeereiccececeeeee e 1- 8-45
4.5.17 The form feed control Optioncceeveevveeieeecccee e 1- 8-46
4.5.18 The assemble variable control optionccceeeveeveereeevenennee. 1- 8-47
4.5.19 The public cross reference list file output control option 1- 8-48
4.5.20 The operational drive control 0ptionccceeevveeeveeeverenenenns 1- 8-50
4.5.21 The program summary output optioncccccocvveveeeerencnnne.. 1- 8-51
4.5.22 The SIMPLEHOST data output controlccccvevrueevennenn. 1- 8-52

Page

5. Assembler output liStSccceirvceiicnniiiiiciiinir e 1-9- 1
5.1 Types of output liStScccevuriiriiiiiiiicecnntr e 1- 9- 1
5.2 List output format CONrolSooovmmmiiieiiiiieeereeeccree e 1- 9- 2
5.3 Outputting the header...........c.cccoiirniinennnnincnnneeseee e 1-9-3
5.4 Option data lists.......ccccoeveriineiiiiimiiineincrn e e 1-9- 4
5.5 ASSEMDIE lISES ...cocveviieriiereereeee et 1-9- 6
5.6 Cross reference lists........ccovveevciiviiiiiinineincincieecenee e 1-9-9
5.7 MEMOTY MAPS ...cciciuireiriiricriieieecintentessesseatessessssssnessssssssassesessassnnassssases 1- 9-12

5.7.1 MEMOTY MAPS . cccceerreeererierncnrreeeeesssssreeessssssnnenesssssssnsessnssssssnnes 1- 9-13
5.7.2 Flag Maps . ccccccerreiriieiieeereceresnneesssesreeressssssss e s ssssssssssennannes 1- 9-15
5.7.3 Symbol Mapsccccerevieririerrnreneneessresssnr s ssaeneans 1- 9-16
5.8 ASSEMDIE rEPOMSccccvviiicrieiereecrerrccre e e 1- 9-18
L3057 T ToTo (0] L= (=T o o] £ PPN 1- 9-18
5.8.2 Final phase repomtscccceceervveeinneeriniiiiinieneincenenessnsesessnesenns 1- 9-21
5.8.3 Total reports . .coccceerieceriercetirerrr e e 1- 9-22
5.9 Public cross-reference listsccccceverveiiinnninnininiinnneentesae e 1- 9-23
5.10 DOCUMENLS ..coeeeieiiiiriiereiee e sieccte s seste s ssssre s e s sasae s e s s s ssnnae s esanns 1- 9-25
5.10.1 Tables of coNtentsccveireiiimiiiiiiice e 1- 9-25
5.10.2 The text of a documentccccvviiiiiiiiiiinenneerre e 1- 9-26

6. Error and warning mesSagescccoveeeiiernrennrininineninnse st 1-10- 1
6.1 ASSEMDIING EITOISoorcvviriiriiiriiii ettt 1-10- 1
6.2 Errors which relate to source programsceceeeeicineeeniiicciineeennnnnnns 1-10- 3

Appendix 1

Error messages when the program memory overflowscccceeiiieennenne 1-A-1

Appendix 2

SIMPLEHOST ..ttt ittt esss s e ss s s s sn e saseesae s sssassansones 1-A-3

Vi

Page
IE-17K User's Manual

1. General information 2-1- 1
1.1 OVBIVIBW ...ttt s se s 2-1- 1
1.2 Characteristics of IE-17K ..ottt 2-1- 2

1.2.1 Interface with target system ..., 2-1- 2
1.2.2 Program MEMOTYccceccevrveervereseeesernnsresseessseseessssessessaessasens 2-1- 2
1.23 Howtoemulate ..., S S 2-1- 2
1.2.4 Break function ... 2-1- 2
1.2.5 Real time trace functionccceecerveiiiieceneccreeceee e 2-1- 3
1.2.6 Data memory coverage functioncccccceeecveeercreneessnnerseennes 2-1- 3
1.2.7 Program memory coverage functionccccceeevveeeeeniieccneneees 2-1- 4
1.2.8 Programmable pattern generator functionccccceeverecieencnnns 2-1- 4
1.2.9 Other characteristicscccccvvervmrceniiriereeeeccee e 2-1- 4
1.3 ConfIQUrationcoccceeeieiriiicre e e ee e e snaenen 2-1-5
1.3.1 System configuration diagramcccecevveeeiiccrnrrenrereseiieee e 2-1- 5
1.3.2 BIOCK dIagramcccoveivierieiieerrircrsreeseseessssneersseessennessennns 2-1- 6

2. SPeCIfication ... 2-2- 1
2.1 MaIN LSI ..t 2-2- 1
2.2 Console iNterfacecccocciieiiieiiiiccreceresr et 2-2- 1
2.3 ENVIFONMENL ..ottt e 2-2- 1
2.4 POWET SUPPIY oottt ternreenesere e sessnatasssessssssssensssassnsssenssananns 2-2- 1
2.5 Built-in power SUPPIYcccceviiiiiiiiiir e 2-2- 1
2.6 Power consumption for each boardcccccccvvvinveersivcinerecccssnreeesenans 2-2- 2
2.7 External dimension (excluding projection)ccceveeecvcerrcrceereveenennnes 2-2- 2
2.9 ACCESSOMES ...evvviriiiiiiiiiicetice e stese s e st s ses st et saessanesssessaeseneeessnesennees 2-2- 3

3. Installation e 2-3- 1
3.1 Removing memory board SUPEIVISONccccerrereereerseesseesssnesseenseneenas 2-3- 1
3.2 Setting SWItChESccueiiiiiiiicirc et 2-3- 2

3.2.1 Setting the switches on memory boardc..cccveervirrineiiinnens 2-3- 2
3.2.2 Setting switches on supervisor boardccceeeeeverrcerrinienens 2-3- 4
3.3 Connection of CONNECIONccecceeveereririeeeerre et 2-3- 6
3.3.1 Internal connector on memory boardcccecvvneerenennen. e 2-3- 6
3.3.2 Internal connectors on supervisor boardccccveeeriniiniinnes 2-3- 7
3.4 Installing SE DOAIcccoeiiiiiieniiniirenrencsesnnneeseeseesseessessseesseeesnas 2-3- 8
3.5 Connecting to host Maching........ceccecriecriiiiitnnnnece e 2-3-9
3.6 Connecting to PROM programmer..........ccccccveievnneersrsseresssressssnesssnenes 2-3-10
3.7 Connecting with target system ..o, 2-3-11

vil

4. Activation s 2-4- 1
4.1 Program 10adingcccoovrieiiniiiieiiiieiinee st 2-4- 1
5. COMMANAS ...ttt s 2-5- 1
5.1 Command NOtationccccevereeierrieeeceente e 2-5- 1
5.1.1 Command input formccueervirieiiiniiicece s 2-5- 1
5.1.2 Form of command expressionccccceeeceieriieiecciieencieeee, 2-5- 1

LT~ S (o111 o | PO RPN 2-5- 3
5.3 COMMANGScooiriririiieriieiecerte et e et ee s esasr e ran e e s e e s e naneeas 2-5- 4
5.3.1 Program memory control commandcccceeeircieneenincnnenennen, 2-5- 4

(1) Initialize program memory (.IP) . ..ccocviiiinieiiniieiene, 2-5- 4

(2) Change program memory (.CP)cccceveemenrnenenienecnenes 2-5- 4

(3) Dump program memory (.DP) ...c....cccovriniiiiiinininieeecinnen, 2-5- 4

(4) Find program memory (.FP) . ..o, 2-5- 4

(5) Save program memory (.SP) . ..ccccoviiiiiniiiiiien 2-5- 4

(6) Load program memory (.LP)cccvvviiiiiniiiiiiiiiecieee 2-5- 4

(7) Verification of program memory (.VP)ccccvvnveniiniincnnens 2-5- 4

(8) Output of PROM data (.XS) . ..cccceereeirriniieiiciinnieeecccneeeen 2-5- 4

5.3.2 Control command for data Memorycccevueenirniiirnniinnnienns 2-5-14

(1) Initialization of data memory (.ID) . ..c.cccovviiiieiniinieiicennee 2-5-14

(2) Change of data memory (.CD)cccccevevvereiiiiiniineecniiinnenn, 2-5-14

(3) Dump of data memory (.CD)cocoueeeeniviineniiiiiiiieeenes 2-5-14

(4) Dump of all data memory (.D)coocreiviiiiciiieiiieens 2-5-14

5.3.3 Emulation Commandccccerierrierienniceiiecienre s 2-5-20

(1) ReSet ((R) . oottt 2-5-20

(2) Program run (.BN)coooiiiiniiiririicniiciccciec v 2-5-20

(3) Program run (Reset condition) (.BG)c.cccceverrveeriiireninnnes 2-5-20

(4) Break (.BK) . ..coceviiiiiiieecieeeeeree e e 2-5-20

(5) Change start address of program (.CA)ccceveereerneennnn 2-5-20

(6) Step operation (.S)civeecieiicieeeee e 2-5-20

(7) Display (.DS) . .eceeceeirrierriirerrte et 2-5-20

5.3.4 Break/trace condition control commandscccecceeeeniiiennen. 2-5-28

(1) Change break/trace condition (.CC) . ..ccccccvrrvvrirernneiinennnns 2-5-28

(2) Change trace ON/OFF condition (.CT) . «ccccevvevierricennnennns 2-5-28

(3) Dump break/trace condition (.DC) . ..cceecevervirrierceeneieeenen, 2-5-28

(4) Dump trace table (.DT) ..ccceeveirecien e 2-5-28

(5) Save break/trace condition (.SC)ccceeeervrrereereericeeeeneen, 2-5-28

(6) Load break/trace condition (.LC)cccccevrrveeeiriernceieeennanen, 2-5-28

(7) Verify break/trace condition (.VC)ccccerviiriiciiincieninns 2-5-28

vill

Page

5.3.5 Coverage display commandccccoccvririimniiniinensnereneenenennes 2-5-54

(1) Dump coverage memory (.DM)ccccoeeveriieriienn e 2-5-54

5.3.6 Program pattern generator (PPG) control commands - 2-5-57

(1) Initialize PPG data (IG) . ..coccvvvecererciiieieccreenicniennns 2-5-57

(2) Change PPG data (.CG) . ..ccceerrerenirieeieee e 2-5-57

(3) Dump PPG data ((DG) . ..cceeeireencririree e 2-5-57

(4) Execute/stop PPG, set PPG operation mode (.EG) 2-5-57

(5) Save PPG data (:SG) . ..cceviiiriirrneeseee e e 2-5-57

(6) Load PPG data (.LG) . .cccovereueerieeercrerireeeeseeee e e 2-5-57

(7) Verify PPG data (.VG) . ..ccceeoeerieeecnreie et 2-5-57

5.3.7 Help commandcoccorimrinnnneneees e 2-5-67

(1) Lists all commands (.H)ccoeeerirveiirieneeeeereee e 2-5-67

5.3.8 Other commandscccocerverrenenreirreierreee e 2-5-69

(1) Define Macro (U)coceviieceeeeeee e 2-5-69

(2) Execute macro (M)cccovieveeecenceerneseeeeeese e 2-5-69

(3) DUMP MACTO (=C) . .ecvrerrriereieirere st e e ssa e 2-5-69

() J oo o I) USSP 2-5-69

. Programmable pulse generatorccooveeniecrncecnenne 2-6- 1
6.1 Displaying, modifying PPG data..........ccocverrerervennirceeneeiee e 2-6- 1
6.2 Setting the Step ratecccocveeeireecieeeeeeeee e 2-6- 2
6.3 Executing PPG, stopping PPG........cccccvevnniineineirneneses e 2-6- 3
6.4 Notes on using the PPGi........ccocoriimenincecree e e 2-6- 4
6.5 PPG application eXamplecccccervrrrrerninerninieeeceee e 2-6- 5

. Program @XeCUIONooovoieeeeeeeeeeeee et eeeeean 2-7- 1
7.1 Real-time emulationcccccoeeeeseieeccrereseees e esre e 2-7- 1
7.2 Setting break POiNtS.........cccuvveeveeeiieiiicresecece et 2-7- 2
7.3 Single-step emUItioNc.ccccvviveieeeeeeeereeer e e 2-7- 3

. Programming the PROM for the SE board 2-8- 1
- EFTOr MeSSagescooovuieiieieceeeecetse e 2-9- 1
9.1 Error messages related to commandsccoeeeeeveveeeeeceeneeeeeeeee. 2-9- 1
9.2 HardWare ITOrccccceiruirieiiiriinise ettt s 2-9- 3

AS 17K Assembler

User's Manual

N E C UMAS17K ASSEMBLER

INTRODUCTION

1. The AS17K assembler supports all products in the 4-bit uPD17000
microcomputer series. As the products in the uPD1700 series are
slightly different, it is necessary to have a device file
corresponding to each one. Please make sure you purchase a
device file with your assembler.

2. The AS17K assembler operates in the following environments:

Host computer 0S Memory size
™ ™
IBM PC-AT PC -DOS 512K bytes
version 3.1 or more

The CONFIG.SYS file settings in PpPC-DOS should be as follows:

- Files equals 15 (within the range 15 to 20)

- Buffers equals 10 (10 or more)

™ T™
IBM PC-AT ,PC-DOS are trademarks of the [BM Corporation.

1-0-1

UMAS17K ASSEMBLER N E C

3. Status When Supplied
3.1 The assembler

(1) File name
AS17K.EXE

(2) Floppy disk formats
The assembler is supplied on 5-inch double-sided
double density floppy discs,

3.2 Device files
(1) File name
D17XXX.DEV (optional)
(2) Floppy disc formats
The device files are supplied on 5-inch double-
sided double density floppy discs.

4. The meaning of the symbols used in this manual

. The same format continued

[Whatever is between the square brackets can be
abbreviated

{ } Select one of what is between the brackets

A An en space or a tab

"o Characters between double quotation marks

CR Carriage return

LF Line feed

TAB Horizontal tab

ooo Represents a desired character string

XXX ditto

0OoO ditto
Expresses a correspondence

it

< D> Expressses a correspondence to what is in the

parentheses.

1-0-2

N E C UMAS17K ASSEMBLER

5. File name restrictions

[Drive name:]) [¥directory name ...] file name [.extension]

Drive name: The name of the drive in which the floppy disk
containing files is set. If the drive name is
omitted, the current drive will be selected.

File name: A character string of four or less em characters
or eight en characters.

Extension: A character string of three or less en characters.

1-0-3

PART I Language

N E C UMAS17K ASSEMBLER

CHAPTER 1 OUTLINE

1.1 Outline of the Assembler

1.1.1 What is an assembler?

Machine language, and consists of zeros and ones. However, for
humans, machine languages are extremely complex and difficult to
learn. If we handle machine language by introducing a symbolic or
assembly language, however, it is possible to enter programs which
are much easier to understand. An assembler is a program which
converts machine language, the only thing which a microcomputer

can understand, into a symbolic language which is easy for humans
to deal with.

Processing_1:

ADD MEMI1, #3 0000001011100011
SKLT MEM2, #8 1101110101011000
B R Processing_2 0111001101100101

—"> Assembler [c—>

Assembly language Machine language
(Symbolic languages)

Assemblers may be classified as absolute assemblers or relocatable
assemblers. The AS17K is an absolute assembler, but it is
different from conventional absolute assemblers, and permits split
programming. Accordingly, while it is an absolute assembler, it

possesses much of the character of a relocatable assembler also.

1.1.2 What is an absolute assembler?

Machine language consists of instructions and data. Instructions
indicate to the computer _the type of action to be taken, while
data are the values which are operated on at that time.

1-11

UMAS17K ASSEMBLER N E C

Data consists of constants and variables which are processed by
operation instructions.

An absolute assembler is an assembler which determines absolutely
the address allotted to instructions and data when converting to
machine language. Thus, all addresses and data must be determined
when assembling. This data is communicated to the assembler
through a location counter control directive called ORG.

The machine language which is generated by an absolute assembler
is stored in memory as is, and can be executed by the micro-
computer. The so created machine language is known as an absolute
object module. The element in the symbolic language which is its
source is known as a source module.

1.1.3 What is a relocatable assembler?

The absolute object module created by an absolute assembler
defines data and addresses absolutely. What is known as a
relocatable assembler, in contrast to this, is an assembler which
generates object modules which may be relocated at a desired
address in memory. The machine language generafed by the use of a
relocatable assembler is known as a relocatable object module.
The machine language contained in a relocatable object module
cannot, as it is, be executed by a microcomputer as a program.
This is because the addresses and the data have relative
(temporary) values. A linker must be used to change the
relocatable object module into a form in which it can be executed
by a micro-computer.

What is a linker?

A linker determines the positions of multiple relocatable object
modules generated by a relocatable assembler, and the address
reference relationships, and organizes them into a unity. The
addresses and data which had been given relative values are
allocated absolute values.

A single arrangement of modules output from the linker is known as
a load module. The load module cannot, as it is, be caused to
execute by the microprocessor. It is necessary for it to be

converted into a form in which it can be executed by the micro-
processor.

1-1-2

N E C UMAS17K ASSEMBLER

1.1.4 The system development sequence for uPD17000

Figure 1.1 shows the total systems development sequence used for
the uPD17000 series. A detailed flow chart of the development of
the software, also, is shown in Figure 1.2.

Figure 1.1 System Development Segquence

‘ Development start ’

V

Systems design

17K specification

decision
Hardware design Software design
(circuit design,
structural design)
Evaluation

Development complet%

1-1-3

UMAS17K ASSEMBLER N E C

Figure 1.2 Software Development Sequence

‘ Start ’

Programs and equipment used (product names)
4
Coding | eceee > Editor
V
Assembling | > Assembler (AS17K)
N4
Debugging | ‘vt > In-circuit emulator (IE-1 7K)
SE Support (SE-17XXX)
— 0K?
No
Yes
End

1-1-4

NEC

UMAS17K ASSEMBLER

1.1.5 Comparison of assemblers

Takble 1.1

assemblers.

Table 1.1

shows the features of both absolute and relocatable

Comparison Table of Assemblers

Absolute assembler

Relocatable assembler

Assemble format

Batch assemble
(however, the AS17K
enables quasi-split
assembling)

Split assemble

|

link

Assemble list
address display

Absolute address

Relative address

enables guasi-split
assembling, it may
be possible to speed
accemble times
depending on the

programming.)

Operand None Limitations created
section by linker
variable;
operation
Varia- | limited
bles Local Cannot be defined Definable
variables (however, definable
with the AS17K)
with batch assem- Address calculation
bers, assemble time is necessary when
cannot be saved even debugging. Since
though only one sec- split assembling is
tion of a source is possible, the program-
amended. (Houever, ming of a module can
Others since the AS17K be carried out by a

number of people.

UMAS17K ASSEMBLER N E C

1.2 An Overview of Assembler Functions of uPD17000

1.2.1 Generating sequence files

The AS17K assembler for the uPD17000 series is an absolute
assembler. However, it is an absolute assembler which offers
module programming, a feature of the relocatable assembler. There
is no linker program such as a relocatable assembler package
generally contains, so the AS17K is also provided with a link
function.

When source modules are split and programmed, it is necessary to
have a sequence file in which may be entered the sequence of the
series of source module files and so forth. The sequence file also
determines options at assemble time. If a source module consists
of one file only, assembling will nevertheless take place even
though there is no sequence file.

Also necessary when assembling is a device file which contains
data specific to devices. This device file defines such data as
instructions usable or the size of ROM and RAM for each device.
The AS17K refers to this device file when assembling. A separate
device file is prepared for each product in the series.

1.2.2 Generating source module files

Programs are generally designed so that they are split into sub-
programs for each function. If sub-programs have a high degree of
functional independence, debugging is easy; further by-products
are greater efficiency in development and easier subsequent
maintenance. A single sub-program is both a coding unit and an
assemble input unit. Assemble input units are known as source
modules. When source module coding is completed, the module is
edited and so forth, and written to a file. The file so created is
known as a source module file.

When source programs are split, it is necessary to have a sequence
file in which the inter-relationships of the parts are entered.
The sequence of a series of individual source modules, for
example, may be entered in the sequence file. It is to be noted
that the split source modules we are talking about here are
different from split files created with the INCLUDE stateﬁent. A
file designated by the INCLUDE directive can be regarded as part
of the source module which contains that INCLUDE directive.

1-1-6

NEC

Figure 1.3

Source program

Source module A

END

Source module B

END

Source module C

END

Source module D

END

UMAS17K ASSEMBLER
Generating a Source Module File
Source module A B Drive
------------- SUB.ASM

INCLUDE B: SUB.ASM :.

EOF

END

Write to file (editor)

@ Source module file

1-1-7

UMAS17K ASSEMBLER N E C

1.2.3 Assembling
It is necessary to have the following files in order to assemble a

source module:

- an assembler file (AS17K. EXE)

- a device file (D17001. DEV, etc)

- a source module file (ocooco. ASM, xxxx. ASM, etc)
- a sequence file (cooo. SEQ)

Output list control is carried out directly from the console when
the AS17K is booted up, or by designating an assemble option in a
sequence file. If an error is detected, for example in an assemble
list, the source module should be corrected and assembling
repeated until the error does not occur. If no errors occur, an
object module file may be generated.

When a source program is split into modules, the AS17K generates
an interim object module file when assembling (.OBJ). This interim
object module file may be used when reassembling to carry out
partial source program modification.

In order to reduce assemble time, the AS17K will only assemble a
corrected source module; with uncorrected source modules, use the
interim object module file which has already been generated. To
tell whether a correction has been made or not, compare the times
of generation of the source module file and the interim object
module file of the same name; if the date of creation of the
source module file is later, then it can be assumed that it has
been corrected. Thus, in cases where there is no interim object
module file, or where the source module file is earlier, the
assembler automatically determines that this is so after generat-
ing the interim object module file, and assembles.

1-1-8

NEC

UMAS17K ASSEMBLER

Figure 1.4 Generating an Object File

LIST file

Assemble list (.PRN)
Cross-reference (.XRF)
Memory map (.MAP)
Document (.DOC)

Assemble report (.REP)

Is there
an error?

YES

Source module file

O

Assembling Interim object module file

(AS17K) — (.0B3)

O
0

Object file (.HEX)

Object file used by PROM

O
Dﬂ, (.2Ro)

NO

file correc

Source module

tion

@)

OK!

Corrected source module file

UMAS17K ASSEMBLER N E C

1.3 Before Beginning Program Development

This chapter sets out a few things which you need to know in
advance in order to use the AS17K easily. Detailed explanations
will be given in subsequent chapters.

1.3.1 Restrictions on symbols
(1) Number restrictions
The symbol table region which may be used in one source module
is 64K bytes.
With the AS17K, a maximum of 255 characters
can be defined in one symbol. The number of
symbols which can be used is as follows:

- where all symbols are 255 characters in length, 240
individual symbols may be set;

- where all symbols are eight characters in length, 3368
individual symbols may be set.

(2) Type limitations
A type must also be defined when defining a symbol. This type
is defined by the symbol definition directive.
There are four varieties of type: data types (DAT type), data
memory address types (MEM type), flag types (FLG type), and
label types (LAB type). The relationship between type and

symbol definition directives is given in Table 1.2.

1-1-10

N E C UMAS17K ASSEMBLER

Table 1.2 Correspondence between Type and Symbol Definition

Directives
Type Symbol definition
directives
Data type (DAT type) DAT
Data memory address type MEM
(MEM type)
Flag type (FLG type) FLG
Label type (LAB type) LAB

1.3.

When carrying out an arithmetic operation with symbols of
differing types, the operation should be executed after
carrying out a type conversion. Further, since types which can
be processed by mnemonics are limited, there will also be
occasions on which it is necessary to carry out a type
conversion while programming.

Defining types will allow the incidence of bugs when program-
ming to be reduced, and further permits the documentation
generation function which the AS17K possesses to be used more

efficiently.
Symbols in macros
Symbols which cannot be globally declared are handled as local

symbols.

2 Restrictions on directives

Forty nesting levels are possible for the statements MACRO, REPT,

IRP,

IF and CASE. It is necessary that it be noted that this level

will fall if developing a separate directive within a directive

definition. Built in macros are also counted within the above-

mentioned 40 levels. For nesting levels with built-in macros,

please refer to Section 3.2.9 on built-in macro directives. Note

that it is possible to refer to, but not define, a macro within a

macro.

1-1-11

UMAS17K ASSEMBLER

NEC

Directives which may be nested.

REPT ~ ENDR
IRP ~ ENDR
IF ~ ELSE~ ENDIF

CASE ~ EXIT~ OTHER ~ ENDCASE

INCLUDE*

* Nesting with the INCLUDE statement has eight possible
levels, and is independent of the directives mentioned

above.

1.3.3 Similar reserved words

Below are listed reserved words which have similar names; care

should be exercised not to confuse them when designing programs.

(1) SETn and SET

SETn is a built-in macro instruction, while SET is a symbol
definition directive. A completely different definition is
achieved by incrementing n (1 < n < 4).

Example 1
Flag A FLG 0.10H. 1] @
Flag B FLG 0.10H. 2
SET2 Flag_A, Flag.B; @
Description

(@D The addresses and bit positions of Flag_A and Flag_B are

defined by the FLG directive.

®@ Flag_A and Flag_B are set by the SET2 built-in macro

instruction.

1-1-12

N E C UMAS17K ASSEMBLER

Example 2

Memory _1 MEM 0.40H
Flag_1 FLG 0.10H.2)
Label_1 LAB 2FFH

Memory _1 SET 1.20H
Flag_1 SET 1.0FH. 1)
Label _1 SET TFH

Description

@® The memory_1, flag_1 and labelinames are defined by the
MEM, FLG and LAB directives.

() The values assigned to the names may be altered by the SET
symbol definition directive.

(2) SKTn, SKFn and SKE, SKNE, SKGE, SKLT.
SKTn and SKFn are built-in macro instructions, while SKE,

SKNE, SKGE, and SKLT are instructions (mnemonics) for the
uPD17000 series devices themselves.

1-1-13

UMAS17K ASSEMBLER N E C

Flag_1 FLG 0.10H.1
Flag_2 FLG 0.10H.2 ©)
Memory_1 MEM 0.20H

SKT2 Flag.1, Flag.2 ; @

SKE Memoryl . H#O0IH ;@

(Explanation)

@

The names of Flag_1, Flag_2 and Memory_ 1 are defined by
the FLG and MEM symbol definition directives.

When the statuses of Flag_l and Flag_2 are tested and both
are set with the SKT2 built-in macro instruction, the
following instruction is skipped.

The SKE instruction is used to determine whether the
contents of memory_1 is 1, and if so, the following
instruction is skipped.

1-1-14

N E C UMAS17K ASSEMBLER

1.3.5 Setting the time and date of the host

The current time and date should always be checked when booting up
PC-DOS on the host IBM PC-AT.

When assembling the AS17K carries out a comparison of the dates of
generation of interim object module files which have the same
names as source module files. If, as the result of this

comparison, the time of generation of the object module file is
found to be later than that of the source module file, that source
module will not be assembled.

If the time on the host clock is later than the time of generation
of the source module file, notwithstanding the fact that the
source module file may have been amended, the results of

assembling shall always reflect the status of that file before it
was amended.

1.3.6 Restrictions on the number of source modules

With the AS17K, it is possible to split the module into a maximum
of 99 source programs and program it.

ering assemble processing order sequences to a sequence file

1-1-15

UMAS17K ASSEMBLER N E C

1.4 Features of the Assembler
This section introduces the features of the AS17K.

1.4.1 pc-DOS assemblers
The AS17K operates in the IBM PG/AT with PC-DOS (Version 3.1).

1.4.2 Capacities for program modularization

A relocatable assembler requires a program known as a linker in
order to combine modularized programs. That is to say, a
relocatable assembler carries out assembling with two programs,
the assembler and the linker.

The AS17K is an absolute assembler, but it is provided with a
program modularization function which is characteristic of
relocatable assemblers. In order to assemble multiple source
modules, the AS17K must have a file in which is entered the names
of the modules and the order in which they are to be assembled.
This is called the sequence file (.SEQ). A sequence file may
contain various types of conditions pertinent to assembling apart
from the names of the source modules.

The AS17K is provided with an assemble time reduction function in
order to assemble modularized source programs more efficiently.
When the AS17K assembles, a comparison is made of the source
module and the interim object module file with the same name. If,
as a result of this comparison, the time of generation of the
source module is found to be later, that source module is
assembled a second time. If the time of generation of the source
module is earlier, it is judged to be a module which has not been
changed, and assembling will not take place. Accordingly assemblv
time can be greatly reduced depending on how the debugging goes.
Please refer to Part 2 Section 6.4 on methods of reducing time
spent debugging for more on this.

1.4.3 Convenient built-in macro instructions

The AS17K has a built-in macro instruction, the purpose of which
is to increase the efficiency of programming and make programs
easier to read. The use of the built-in macro instruction is

recommended for setting, re-setting, inverting or initializing

1-1-16

N E C UMAS17K ASSEMBLER

flags, or skipping and switching memory banks in accordance with a

flag. It is an extremely effective instruction for creating
program libraries. The built-in macro instruction can also be used
‘for quick development of user-defined macro instructions. The
amount cf time required for assembling when developing a built-in
macro instruction is about the same as the time required for
converting to a mnemonic machine language.

1.4.5 The documentation generation function

It is possible, with the AS17K, to enter documentation into source
programs by using the documentation generation instructions
SUMMARY and TAG. This instruction can be used at the beginning of
a program module or routine to insert a description of how it
operates or the design procedure. If, during assembling,
documentation generation is specified in a sequence file, it is
possible to generate and extract documentation separately from
assembler lists. Documentation may be generated for symbol lists
and summaries which are used in program modules and routines.

When generating source programs, the time taken for the task of
producing documentation after program design is completed can be
greatly reduced by entering program explanations in Japanese using
the documentation generation control instruction.

It is also possible, with the AS17K, to generate automatically
memory maps and flag maps effectively by using the symbol
definition directive. For more details, please refer to part 2

section 4.5.11 on the map file output control option.
1.4.6 Two types of cross-reference functions

The AS17K has cross-reference functions with the following two
types of formats:

1-1-17

UMAS17K ASSEMBLER N E C

(1) Table format
At the end of an assemble list, cross-references may be output

in alphabetic symbol order.

(2) Buried formats
A cross-reference list may be generated in the label
definition section of an assemble list. De-bugging can be
carried out most efficiently as statement addresses which are

referenced in the assemble list can be displayed.

1.4.7 The assemble report function
The AS17K assemble report function will generate an assemble
report file (.REP) which will output:

(1) The time required for assembling

(2) The memory/file volume used

(3) The number of macros used

(4) The number of public and local symbols

(5) The list and transaction drive created when modules are
assembled

(6) The file generated when linking

(7) The number of errors and warnings generated.

It is possible to carry out tasks more efficiently by checking the
assemble report file.

1.4.8 The automatic object load function

When the host IBM PC-AT is connected to the IE-17K in-circuit
emulator, it is possible, while assembling, to download the object
codes determined automatically to the IE-17K.

1.4.9 Source program hierarchy creation
The AS17K will permit hierarchial programming through the
effective use of the source program module splitting function, and

the documentation generation control instructions SUMMARY and TAG.

1-1-18

N E C UMAS17K ASSEMBLER

Figure 1.5 Hierarchial Programing

Source program

Program

Module A (SUMMARY)

Module B (SUMMARY)

Routine B1 (SUMMARY)

Module C (SUMMARY)

Routine C1 (SUMMARY)

Routine C2 (SUMMARY)

Tag A (TAG)

Tag B (TAG)

1-1-19

UMAS17K ASSEMBLER N E C

Hierarchial levels in programs are, from the top:

1. Program

2. Module
3. Routine
4. Tag

This method of hierarchial programing is very effective when de-
bugging using the simple host, which is one of the uPD17000 series
development tools.

For details please refer to the PD17000 series simple host

manual.*

*: To be published

1-1-20

N E C UMAS17K ASSEMBLER

CHAPTER 2 METHODS OF ENTERING SOURCE PROGRAMS

2.1 The Basic Operations of Source Programs

Source programs are, as shown in figure 1.3, composed of source
modules. Source modules are composed of statements. For some notes
on the structure of statements, please refer to section 2.2 on the
structure of statements.

There are no limitations on the size of a source module. Thus,
there are no limitations on the number of statements which may be
entered. However, the maximum number of modules possible in a
split source module is 99.

Instructions, directives and control instructions may be entered
into a source program in the position desired; however, it is
necessary to enter an END directive and only that instruction at
the end of each source module.

1-241

UMAS17K ASSEMBLER N E C

2.2 The Structure of a Statement
An assembler language source program is composed of statements. A

statement is entered using the characters specified in section 2.4
on the character set.

When source programs are generated using a text editor, each
statement is terminated by a carriage return or a line feed, but
the assembler will only interpret a line feed as the end of a
statement and will ignore a carriage return.

As explained below, a statement is composed of four fields: Symbol
fiela, Mnemonic field, Operand field and Comment field.

Each field is delimited by a space 8-bit JIS code 20H, a TAB
(09H), a colon (:), (3AH), or a semicolon (;) (3BH). The number of
characters in a line is unlimited, the end of the statement being
determined by a line feed.

With free entry formats, a statement may be written from any
field, so long as the order is Symbol field, Mnemonic field,
Operand field, Comment field.

Symbol 1 Mnemonic
field field

1 l Operand ‘

| Comment
field I

field J LF

1
©)

() Symbols entered in the Symbol field are delimited by a colon
or a space created by a Blank or TAB character. Colons and
blank spaces are different when using instructions for
entering to the Mnemonic field.

If an Operand field is required, it is delimited by spaces.
Comments entered in the Comment field are delimited by
semicolons.

@O

() As many spaces as are desired may be entered before and after
colons and semicolons. Example 1 below illustrates the
situation in which a colon is entered between a Symbol field

and a Mnemonic field, while example 2 indicates what occurs
when a blank space is used.

1-2-2

NEC

UMAS17K ASSEMBLER

(Example 1)
AAA : LD REG, MEMORY
BBB : ST MEMORY, REG

(Example 2)

AAA SET 3
BBB DAT 5

1-2-3

’

.
’

Load memory to register
Store register to memory

UMAS17K ASSEMBLER N E C

2.3 The Tabulation Function

The AS17K is provided with a tabulation function in order to put
assemble lists into formats which are easy to read. The tabulation
function organizes variously Symbol fields, Mnemonic fields,

Operand fields and Comment fields in source programs from each
eighth field.

(Example)

Addition:
ADD REG1, MEM1
ADDC REG2, MEN2 } 8-bit addition

L |

Column divisions in multiples of eight integers
(number of tabulations)

To operate the tabulation function, a TAB (horizontal TAB, O09H)
is inserted before the semicolon which indicates the start of a
Mnemonic field, Operand field, or Comment field in a source
program.

Symbol {Mnemonic l , Operand ‘
t

Comment J

t
“TAB” “TAB” “TAB”

The AS17K has the capability for deciding, depending on the
printer being used, whether to send a TAB code (09H) or a blank
code to fill in. This is provided in order to deal with printers
which cannot recognize TAB codes. In this situation, the AS17K can
designate a blank code to be sent to the printer in place of the
TAB code. It is recommended, when using the simple host, that TAB
codes be used in order to use disk space efficiently. For details,
please refer to the uPD17000 series simple host manual.

1-2-4

N E C UMAS17K ASSEMBLER

2.4 The Character Set
Eight-bit JIS code characters and shift JIS code characters (refer

to Appendix 8) should be used to enter statements. There are
restrictions on the use of characters as symbols. For details,
please refer to the rules given in section 2.5.2 on entering
symbols. Note that with reserved words, there is no distinction
between lowercase characters and uppercase characters.

(Example 1)

AAA and AAa are interpreted
AAA - DAT 3 as different symbols.
AAa DAT 5
(Example 2)
MEM1 and mem1 are different
MOV MEM1, %1 symbols. MEM! is set as one,

Mov meml, %3 while mem1 is set as three.

However, the reserved word MOV

is interpreted as the same as
Mov.

2.4.1 Alphanumeric characters
The alphanumeric characters consist of alphabetic characters and
numeric characters.

2.4.2 Numeric characters

The binary numerals are the numerals 0 and 1.

The octal numerals are the numerals 0, 1, 2, 3, 4, 5, 6 and 7.
The decimal numerals are the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8
and 9.

The hexadecimal numerals are the numerals 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, A, B, C, D, E and F.

1-2-5

UMAS17K ASSEMBLER

NEC

2.4.3 The use of special characters

It will be more efficient if en characters are used in the

situations. given below. If em characters are used in these

situations, the applications cannot be used, and the characters

will be interpreted simply as characters. In character strings

(characters and constants) or Comment fields, these special

characters may be used to signify themselves, line feeds excepted.

Symbol

-~

—_~ ~ %

n ¥ -

~e

Name
Space
Question mark

Unit price symbol
Underscore

Comma
Period

Plus sign

Minus sign
Asterisk

Slash

Left parenthesis

Right parenthesis
Dollar mark

Equal sign
Semicolon

Colon

Single gquation

mark

Sharp sign

Main use
Spaces delimit fields
Character equivalent to alphabetic
character
A symbol used for bit addressing
Character equivalent to alphabetic
character
Delimiter between operands
Decimal point or a symbol used to
indicate the value of the location
counter
Positive sign or ADD operator
Negative sign or SUBTRACT operator
MULTIPLY operator
DIVIDE operator
A symbol used in pair with a right
parenthesis to change the order of
precedence in operations or for
addressing
Ditto
Location counter value

Comparative operator

Indicates the beginning of a comment

Delimits labels

A symbol used to indicate the beginning

or end of a character constant
Comparative operator
Ditto

A symbol used to indicate the value of

an immediate data

1-2-6

NEC

UMAS17K ASSEMBLER

& Ampersand

TAB code

LF code
CR code
NULL code
FF cod

Indicates a character string linkage
within a macro

A character corresponding to eight
blank spaces

Indicates the end of a statement

Not recognized by the assembler
Ditto

Ditto

1-2-7

UMAS17K ASSEMBLER N E C

2.5

The Symbol Field

Symbols are entered in the Symbol field. When a symbol is entered
in the Symbol field, that symbol is said to be defined. Symbols
may be classified as labels or names, depending on their purpose

and how they are defined.

(1)

(2)

Names

A symbol which is defined by the directives DAT, SET, MEM,
FLG, or LAB is known as a name. Names are allocated to numeric
data or addresses. They substitute for these numeric data or
addresses so that the name defined can be used in a program.
That is to say, numeric data cannot as it is be handled; it
has to be given a name when it is desired to use them. For
example, if the data memory (RAM) OOH address is named "REGO",
when that address needs to be used the name "REGO" is used.

In this situation, "REGO" is referred to as a name.

(Example)

The 00 (BANKO) address in data memory
is defined as the name REGO.
The numeric data 10H is defined as the

REGO MEM 0.0O0H

OCTOBER DAT 10H

name OCTOBER.

Labels

Labels are symbols which are allocated to the ORG, DW or DB
directives, or instruction (mnemonic) addresses. They are used
to refer to the program memory addresses (location counter
values) allocated to the instruction or directive to which
they are attached. ’

That is to say, a label is attached to the first address in a
routine as a name giving some sort of indication of what that
routine does, and is used when referring to or branching to
that routine from another routine.

1-2-8

N E C UMAS17K ASSEMBLER

2.5.

All

2.5.

(Example)
Address
0010 SUBROUTINE: ADD MEMORYI, 3
0011 ST WEMORY2, REGISTER
0030 BR SUBROUTINE

In this example "Subroutine” is referred to as a label.

1 Symbol types
symbols may be classified into one of the following for types:

1. Data type (DAT type) — a symbol which defines a constant
2. Data memory address type (MEM type) — a symbol which
defines a data memory (RAM) address;

3. Flag type (FLG type) — a symbol which defines a flag (one
bit of a address in RAM);
4. Label type (LAB type) — a symbol which defines a program

memory address (location counter value).

2 Rules for entering symbols

The rules for entering symbols are as given below.

(1)

(2)

(3)

The characters used in symbols are 8-bit code characters
and shift JIS code characters other than the special characters.
(Cxceptfbr':”,”?") The special underscore and cuestion mark
characters are used. A en numeric character may not be used as
the first character. However, numeric labels entered into CASE
END CASE directives may use en numeric characters.

The length of a symbol is between one and 255 characters, in
the case of en characters. More than 256 characters may be
entered in a Symbol field, but only the first 255 from the
beginning will be effective.

Labels are terminated with a colon (3AH). A space or a
tabulation code (TAB) may be inserted between the label and
the colon.

1-2-9

UMAS17K ASSEMBLER N E C

(4) A name must always be entered in the Symbol field when using
the DAT, SET, MEM, FLG, LAB and MACRO directives. Names are
terminated by a space or a tabulation code (TAB).

(5) It is not possible to define the same symbol more than once.
If this is done, an S error (symbol multi-defined) will be
generated. However, symbols defined by a SET directive, or
symbols which have not been globally declared and defined in a
macro, are exceptions to this. If the symbol is not declared
publicly, it is possible to use the same symbol in another
module. On these occasions, these symbols will be treated as
different symbols.

(6) A reserved word may not be defined as a symbol.

(Example 1)

Correct example Wrong example
F1F4: 1F4F: ... Started with a numeral
LABEL: LABEL: ... No colon attached
HERE: HE RE: ... Blank space occurs within
a symbol
ANH: AND: ... Cannot be used by the
instruction
ENDX: END: ... Cannot be used by the
directive
(Example 2)
In ABC XYZ: where X is the 255th character the
symbol will be interpreted as ABC X:.
(Example 3)

ABC DAT 3

XYZ DAT ABC

Three is assigned similarly to ABC and XYZ.

1-2-10

N E C UMAS17K ASSEMBLER

(Example 4)

LOOP: MOV RO,%20H <+«—

LOOP: ADD RO, #20H

BR LOOP —_—

The symbol LOOP is defined twice.

On the second occurrence of the definition, an S error (symbol
multi-defined) is generated.

If a symbol is defined twice, the effective definition will be
the first one.

1-2-11

UMAS17K ASSEMBLER N E C

2.6 The Mnemonic Field
Instructions, directives and console instructions are entered in

the Mnemonic field. With instructions which require operands, one
or more space codes or tabulation codes (TAB) are required in
order to distinguish between the Mnemonic field and the Operand
field.

(Example)
Correct example Wrong example
BR LOOP BRLOOP ... There is no space between
the Mnemonic and Operand
fields
RET RE T ... A space has been inserted

within a mnemonic
ADD M, #1 AD M,#1 .. AD does not occur in

uPD17000 series instruc-

tions.

1-2-12

N E C UMAS17K ASSEMBLER

2.7 The Operand Field

Data (operands) which are necessary for the execution of

instructions are written in the Operand field. There are
instructions’ which do not need operands, as well as instructions
which require one, two or more operands, such as macro directives.
Where two or more operands are required, each operand is
discriminated by a comma. One or more spaces or tabulation codes
(TAB) are required to be inserted between a Mnemonic field and an
Operand field.

2.7.1 Entry format for the Operand field
There are five formats, as given below, for entry to Operand
fields.

(1) Constants
A constant may be a numeric constant composed entirely of
numerals, or a character constant composed of characters.
Numeric constants may be binary, octal, decimal or
hexadecimal; they are entered in en characters.
(a) Binary constants
Binary constants are indicated by binary strings with the
en character B added at the end.
Example 1011B
(b) Octal constants
An octal constant is indicated by an octal character
string with en character O or Q attached at the end.
Example 730
73Q
(c) Decimal constants
A decimal constant is indicated by a decimal character
string with en character D or nothing attached to the end.
Example 927
927D

1-2-13

UMAS17K ASSEMBLER

NEC

(2)

(da)

(e)

Hexadecimal constants
A hexadecimal constant is indicated by a hexadecimal
string with en character H attached at the end. Where the
first character is an en character other than 0 to 9, 0 is
attached at the beginning.
Example 9CH

OABH (If ABH is entered, this is interpreted as a

symbol).

Character constant
haracter constants are composed of 8-bit JIS code
characters (line feed excepted) or shift JIS code
characters enclosed in commas.
Characters enclosed in commas will, as a result of
assembling, be converted to 8-bit JIS codes or shift JIS
codes.
If using commas as character constants, two commas should
be used one after the other. Character constants cannot be

operated on.

(Examples)
‘A’ ...41H
(en)
'a' ...8360H
(em)
vt ...27H
(en) A single comma is reserved as
a constant.
At ...4127H
(en)
v 20H
(en space)
! ...203CH

$ (location counter)

The $ sign indicates a location counter value. Thus, where

it is used it gives the program memory address of that

instruction.

1-2-14

N E C UMAS17K ASSEMBLER

(4)

(Example) Address

100 MOV RO, #20H
101 LOOP: ADD R2,#30H
102 BR $-1

103 BR $+20H

The $ in "BR $-1" indicates the address 102H. Thus, $-1
indicates the address 101H. The $ in the example "BR $+20H"
indicates the address 103H. "BR $-1" uses a label and operates
similarly to "BR LOOP".

Symbols

Where a symbol is entered in an Operand field, the value
assigned to that symbol (label or name) is regarded as the
of::erand value.

(Example 1) Here ! BR There
There: RET
(Example 2) VALUE DAT 1H
ADD RO, 4VALUE

"ADD RO, #VALUE" has the same meaning as "ADD RO, #1H".

Expressions

When the constants, dollar signs or symbols mentioned above
are linked by operators, they are known as expressions. There
are 17 types of operators (+, -, *, /, MOD, NOT, AND, OR, XOR,
SHR, SHL, EQ or =, NE or <>, CT or >, GE or »>= LT or <, and LE

or <¢<=). The order of priority of execution of operations is

fixed.
1-2-15

UMAS17K ASSEMBLER N E C

The bit position segment symbol required for writing memory or

flag addresses may also be entered as part of an expression.
For more details, please refer to section 2.9 on expressions

and operators.

1-2-16

N E C ' UMAS17K ASSEMBLER

2.8 The Comment Field

The Comment field begins with a semicolon, and the comment follows
after. Comments are notes written in to help in the understanding

of the contents of programs when referring to assemble lists; they
are output with the assemble list, but are ignored by the

assembler.

If two semicolons are used together in a macro definition, the
assembler will treat them as a comment within the macro
definition, and they will not be printed out when the macro is
developed.

(Example)

HERE:MOV OOH,1 ; THIS IS A COMMENT

7 BEGIN LOOP HERE

If the character following the semicolon(;) is a period(.), the
character string following the period is registered as a TAG.
(Please refer to section 3.3.4 on the Documentation Generation

Control Instruction).

1-2-17

UMAS17K ASSEMBLER N E C

2.9 Expressions and Operators

2.9.1 Expressions

Character or numeric expressions displayed in the Operand field
using symbols, constants or operators are known as expressions.
Expressions are of four types: data type (DAT type) expressions,
data memory address type (MEM type) expressions, flag type (FLG
type) expressions and label type (LAB type) expressions.

An explanation of the method of generating these different types
of expressions is given below.

For information on the symbol types used in these expressions,
please refer to section 3.2.2 on Symbol Definition Directives.

(1) Data type (DAT type) expressions
Data type expressions are used when representing 16-bit data.
When the result of operating on an expression is 17 bits or
more, a V error (illegal operand value) is generated.
However, with data type expressions which are entered as the
operands of instructions, immediate data which has a #
attached immediately in front of the expression indicates 4-
bit data. In this situation, if the result of the expression
is five bits or more, a V error will also be generated.
It is possible to use constants or symbols which have already
been defined as data types. In a data type expression, symbols
other than data types may be used in data type expressions,
but type conversion must be effected.

(Example)
count_number DAT 0256H ; @
MEM1 MEM 0.00H @
MOV MEM1, % count_number/82H H©)
ADD MEMI1, % count_number*4H T ®
t
; V error generated

1-2-18

N E C UMAS17K ASSEMBLER

(Comments)

(@ The value 0256H is allotted to the name count number.

@ The bank 0 data memory address 00H is allotted to the name
MEM1. '

® The count number/82H (256H/82H = 4H) is stored in MEM1.
Count number/82H is a data type expression.

@ 1In this example, count number*4H executes 256H x 4H;
because the result of the operation is in five bits or
more, a V error is generated.

Data memory address type (MEM type) expressions

An MEM type expression is used to represent a data memory

address. MEM type expressions are able to use the position

segment symbol ".". After execution of the operation, only the
lower 12 bits of data are significant.

Symbol types which are able to make use of MEM type

expressions are MEM types and DAT types.

(Example)

MEM4 MEN 0.10H4
MEMS MEN 0.20H O]
CONST1 DAT 2

CONSTZ DAT 4H

Mov MEM4+4H, 4CONST! @
MEMA MEM CONST1+3H .CONST2+2H H©)

1-2-19

UMAS17K ASSEMBLER N E C

(3)

(Comments)

@ MEM4, MEM5, CONST1, and CONST2 are defined by a symbol
definition directive.

®@ The expression MEM4+4H means the bank 0, data memory
address 14H. MEM4 is an MEM type symbol.

® The expression CONST1+3H. CONST2+2H refers to the bank 5
data memory address 06H. Thus, MEMA defines the bank 5
data memory address 06H.
CONST1 and CONST2 are DAT type 5 symbols.

Flag type (FLG type) expressions

A flag type expression is used to represent a flag. In a flag

expression, a flag type parallel operation cannot be executed.

Only operations within the range delimited by position

segments indicators (.) are effective. The symbols which may

be used are DAT type and MEM type.

Example:

MEME MEM' 0.13H

CONST3 DAT OH

CONST4 DAT 14H @
CONSTS DAT 3H

FLAG] FLG MENG. OH ' @
FLAGZ FLG CONST3+2H.CONST4+6H. CONSTS O
(Explanation)

(A MEM6, CONST3, CONST4 and CONSTS are defined by the symbol
definition directive.

®@ Bank 0 data memory address 13H(MEM6) and bit position zero
(LSB) are assigned to the name FLAG1. In this situation,
MEM6 is an MEM type symbol.

® The bank address 2 data memory address 1AH and bit
position 3 (MSB) is assigned to the name FLAG2. In this
situation, CONST3, CONST4 and CONSTS are DAT type symbols.

1-2-20

N E C UMAS17K ASSEMBLER

(4) Label type (LAB type) expressions
An LAB type expression is used to represent the value of a
program memory address (location counter).

Program memory addresses (location counters) may be
represented by up to 16 bits.

An LAB type expression is capable of being used as a symbol
defined by an LAB expression and a constant.

If a symbol other than an LAB type symbol is used in an LAB
type expression, it is necessary to carry out a type

conversion.
Example:
Data_table_1 LAB 0300H O
ORG Data_table_1 s @
Table_area_1: DB 00H, 48H
ORG Data_table 1+20H ;@
Table_area_2: DB 10H, 524
ORG Data_table_1+40H ' ®
Table_area_3: DB S0H, 80H

(Explanation)

@ The value 0300H is allocated to the name data_table_1.

@@ @ The first address in the table region is defined by
a label type expression.

1-2-21

UMAS17K ASSEMBLER

NEC

2.9.2 An outline of operators
(1) Outline

There are five types of operator in the AS17K assembly

language; the order of priority of operations is fixed.

CD Arithmetical operators
+, -, *, [/, MOD

®@ Logical operators
OR, AND, XOR, NOT

® comparative operators
EQ, NE, LT, LE, GT, GE
=, ¢ >, ¢, ¢=, >, >=

@ shift operators
SHR, SHL

® others

() (symbol designating the order of operations).

(2) The order of priority of operators
The order of priority of operators is fixed as in
following table, but it is possible to alter this
using parentheses. If operators of the same order
occur in an expression, the operation takes place

the

order by

of priority
from the

left. In the following table, the highest order of priority is

given as 1.

Table 2.1 The Order of Oriority of Operators

Order of Operator
priority
1 I() (Symbol indicating order of operation)

*, /, MOD, SHL, SHR

2
3 +, -
4 EQ, NE, LT, LE, GT, GE

=, <>, <, &=, >, >=

;]

NOT

AND

OR, XOR

1-2-22

N E C UMAS17K ASSEMBLER

2.9.3 Arithmetical operators

(1) Addition operators

[Format]

<expression 1>+<expression 2>, +<expression 3>

{Function])
Adds the value (evaluation) of the expressions entered on
either side of the operator.

[Explanation]

If the result of the operation, including the symbol bits,
exceeds the range of 16 bits (-215 to +215), a V error
(initial valid value) will be generated.

[Example]
START DAT 4K
OFFSET DAT 3H
STEP DAT 2H @
R1 MEM 0.01H J
MOV R1,4START+OFFSET i @
LOOP1:
ADD RI,4STEP ' ®
SKF1 CY @
BR LOGPIEND
BR LOOPI
LOOP1END:
(Comments)
(@ Dpefines symbol.
(@ sStores START+OFFSET(07H) to R1 as the initial value.
® adds STEP to R1.
@ 1If there is a carry, jumps to LOOP1END.

1-2-23

UMAS17K ASSEMBLER N E C

(2) Subtraction operators

[Format]
<expression 1>-<expression 2>, -<expression 3>

[Function)
Subtracts the value (evaluation) of the expression on the
right from the value of the expression on the left of the

operator.

[Explanation]
If the result of the operation, plus the symbol bits, exceeds
the range of 16 bits (-2'5 to +215), a V error (invalid value)

will be generated.

[Example]:

TABLE_end LAB 100H] [©)

TABLE_area LAB 40H

ORG TABLE_end - TABLE_area ; @

TABLE_start:
D¥ 0445H } Q@
DY 5637H

ORG TABLE_end

(Comments)
® Dpefines a symbol.
® The table start address is taken as "TABLE_ end - TABLE_
area" (0COH).
® Effects a data definition.
1-2-24

NEC

UMAS17K ASSEMBLER

(3) Multiplication qperators

[Format]

<expression 1>*<expression 2>

[Function]

Multiplies the values of the expressions (evaluations) entered

on either side of the

[Explanation]

operator.

If the result of the operation, plus the symbol bits, exceeds
16 bits (-213 to +2'3), a V error (invalid value) will be

generated.

[Example]
Table LAB 100H]
Block LAB 10H
ORG Table
ORG Table + block
@
ORG Table + (block*2H)
ORG Table + (block*3H)
(Comments)

@ Defines a symbol.

@ Defines the first addresss of the table region in program

memory .

1-2-25

UMAS17K ASSEMBLER N E C

(4) Division operators

[Format]
<expression 1>/<expression 2>

[Function]

Divides the value (evaluation) of the expression on the left
of the operator by the value (evaluation) of the expression on
the right of the operator. '

[Explanation]

o If the result of the operation, plus the symbol bits,
exceeds the range of 16 bits (-215 to +215), a V error
(invalid value) will be generated.

o If the value of expression 2 is 0, the result of the
operation will be 0.

o If the expression is indivisible, the part below the decimal
point will be discarded.

[Example]

Table area LAB 40H :] 0]

Table start LAB 200H

ORC Table_start + (Table_area/4H)

@

ORG Table start +(2*(table area/4H))

(Comments)
C) Defines a symbol.
@ Defines the first address in the table region.

1-2-26

N E C UMAS17K ASSEMBLER

(5) The MOD operator

[Format]
<expression 1>AMODAexpression 2>

[Function]

Obtains the remainder when the value (evaluation) cf the
expression on the left of the operator is divided by the value
(evaluation) expression on the right of the operator.

[Explanation]
If the value of the right expression is 0, the result of the

operation will be 0.

[Example]

Constant_1 DAT 552H

Constant 2 D
v

-
-J

Rl MEX O.10H

ADD Rl, #Constant_.1 MOD Constant.2

(Comments)
In the example given above, the result of executing 'constant.
1 MOD constant_.2" will be 4H.

1-2-27

UMAS17K ASSEMBLER N E C

2.9.4 Logical operators
(1) The OR operator

[Format]
<expression 1>A OR A<expression 2>

[Function]
Returns the logical sum of the values (evaluations) of the
expressions designated before and after the operator.

[Explanation]
Negative numeric values is processed as twos complements, the
symbol bits, similarly, are operated on as numeric values.

[Example]
R1 MEM 1. 404
Constant_1 DAT 4H
SuB Rl, #Constant_1 OR 8H
(Comments)

In the above example, the result of executing '"constant_1 OR
8H" is '"OCH".

1-2-28

N E C UMAS17K ASSEMBLER

(2) The AND operator

[Format]
<expression 1>A AND A <expression 2>

[Function]
Returns the logical product of the values (evaluations) of the
expressions designated on either side of the operator.

[Explanation]
A negative numeric value is processed as twos complement; the

symbol bits, similarly, are operated on as numeric values.

[Example]

Constant_1 DAT 4587H

R10 MEM 2.50H

MOV R10,#(Constant_1/2H) AND OFH

(Comments)

In the abovementioned example, the result of executing
"(constant_1/2H) AND OFH" is "OCH". " AND OFH" is used because
in DAT type expressions, the lower four bits only are
designated as significant.

If in the above example, " AND OFH" is omitted, an error will
be generated.

1-2-29

UMAS17K ASSEMBLER N E C

(3) The XOR operator.

[Format]
<expression 1>A OR A <expression 1>

[Function])
Returns the exclusive logical product of the value of the
expression (evaluation) designated on either side of the

operator.
[Explanation]
Negative numeric values are processed as twos complements; the

symbol bits also are operated on as numeric values.

Example:

Constant_A DAT 2345H
Constant B DAT 42H

RO2 MEM 0.42H

ADD RO2,#((Constant_A-Constant_B) XOR OFH) AND OFH

(Comments)

In the example given above, the result of executing
"((constant_A-constant_B) XOR OFH) AND OFH is "OBH".

" AND OFH" is "OCH". " AND OFH" is used because in DAT type
expressions, the lower four bits only are designated as
significant.

If, in this example, " AND OFH" is omitted, an error will be

generated.

1-2-30

N E C UMAS17K ASSEMBLER

(4) The NOT operator

[Format]
NOT A <expression>

[Function]
Returns 1 complement of the evaluation of the expression
designated.

[Explanation]

Negative numeric values are processed as twos complements; the
symbol bits, also, are processed in the same way as bits
defined as numeric values.

[Example]

Constant DAT 4567H

RS MEM O.12H

MOY R9, #(NOT constant) AND OFH

(Comments)

The result of executing "(NOT constant) AND OFH" in the above
example is "8H".

AND OFH" is "OCH". " AND OFH" is used because in DAT type
expressions, the lower four bits only are designated as
significant.

If, in the example given above, " AND 0OFH" is omitted, an

error will be generated.

1-2-31

UMAS17K ASSEMBLER N E C

2.9.5 Comparative operators

These operators carry out a comparison of the left and the right,
and if the result is true, return -1; if false, they return 0 as
the result of the operation.

(1) The EQ (Equal) operator

[Format]
<expression 1> AEQ A<expression 2>

<expression 1>=<expression 2>

[Function]

If the values (evaluations) of the left and right expressions
are the same, -1(true), is returned; if they are not the same,
0 (false) is'returned as the result of the operation.

[Explanations]

o It is possible to enter EQ as an = sign.

o As -1 is processed as twos complements, in hexadecimal it is
the value "OFFFFH'".

[Example]
Condition DAT 0AH] @
Rl MEM 0 .434
wacro MACRO P1,P2,P3
IF Pl EQ Condition
MOV R1,4P2
: @
ELSE
LI R1,4P3
ENDIF
ENDM

(Comments)

@ Defines a symbol

® carries out a macro definition. P1, P2 and P3 are
temporary parameters.
If P1 = condition, IF~ ELSE is developed; if P1 not =
condition, ELSE~ENDIF is developed.

1-2-32

N E C UMAS17K ASSEMBLER

(2) The NE (Not Equal) operator

[Format]
<expression 1> ANE A<expression 2>

<expression 1> < > <expression 2>

{Function]

If the left and right expressions are not equivalent, returns
-1 (true); if they are the same, returns 0 (false) as the
result of the operation.

[Explanation]

o "NE" may be entered as "< »>",

o -1 is processed as twos complements; in hexadecimal, it is
expressed as "OFFFFH".

[Example]
Condition DAT OBH] ()
R3 MEN 1 .34H
Macro MACRO PI,P2,P3
IF Pl NE Condition
MOY - R3,#P2
: @
ELSE
MoV R3,4P3
ENDIF
ENDM

(Comments)

C) Defines a symbol

@ carries out a macro definition. P1, P2 and P3 are
temporary parameters. If P1 not = condition, IF~ELSE is
developed; if P1 = parameter, ELSE~ENDIF is developed.

1-2-33

UMAS17K ASSEMBLER N E C

(3) The LT (less than) operator

[Format]
<expression 1> ALT Acexpression 2>

<expression 1> < <expression 2>

[Function]

When the-value (evaluation) of the lefthand side is less than
the value (evaluation) of the righthand side, -1 (true) is
returned; when the value (evaluation) of the lefthand side is
greater than the value (evaluation) of the righthand side, or
is the same, 0 (true) is returned as the result of the

operation.

[Explanation]
o "LT" may be entered as
o As -1 is processed as twos complements; as a hexadecimal

nen

value it is expressed as "OFFFFH".

[Example]
Condition DAT 024 ©)
. R3 MEM 3 .45H]
Macro MACRO P1,P2,P3
IF P1 LT Condition
SuB R1,4P2
:)
ELSE
SuUB R1,%P3
ENDIF
ENDM

(Comments)

(@ Defines a symbol.

@ carries out a macro definition. P1, P2 and P3 are
temporary parameters. If P1 <« condition, IF~ELSE is
developed; if P1 > condition, ELSE~ENDIF is developed.

1-2-34

N E C UMAS17K ASSEMBLER

(4) The LE (less than or equal) operator

[Format]
<expression 1> ALE A <expression 2>
<expression 1><=<expression 2>

[Functicn]}

When the expression value on the left is smaller than or equal
to the value (evaluation) on the right, -1 (true) is returned;
and when the value (evaluation) on the left is greater than
the value (evaluation) on the right, 0 (false) is returned as
the result of the operation.

[Explanation]
o "LE" may be entered as "<¢="
o As -1 is processed as twos complements, in hexadecimal it

is expressed as '"OFFFFH".

[Example]
Condition DAT 04H :] O]
R3 MEM 1 .13K
Macro MACRO P1,P2,P3

IF P1 LE condition
SuB R1,%P2
ELSE @
SUB R1, %P3
ENDIF
ENDM

(Comments)

C} Defines a symbol.

C) Effects a macro definition. P1, P2 and P3 are temporary
parameters. If P1 < condition, IF~ELSE is developed; if
P1 > condition, ELSE~ENDIF is developed.

1-2-35

UMAS17K ASSEMBLER

NEC

(5) The GT (greater than) operator

[Format]
<expression 1> AGT A <expression 2>

<expression 1> > <expression 2>

[Function]

wWhen the expression value on the left is smaller than-or equal
to the value (evaluation) on the right, -1 (true) is returned;
and when the value (evaluation) on the left is greater than
the value (evaluation) on the right, 0 (false) is returned as
the result of the operation.

[Explanation]
o "GT" may be entered as
o As -1 is processed as twos complements, in hexadecimal it is

l')ll.

expressed as "OFFFFH".

Example:
Condition DAT 07H] ©)
RS HEN 3 .4dH
wacro MACRO P1,P2,P3
IF P1 GT Condition
SUB RI,%P2
ELSE ®
SUB RI,4P3
ENDIF
ENDM

(Comments)

C) Defines a symbol.

(} Effects a macro definition. P1, P2 and P3 are temporary
parameters. If P1 > condition, IF~ELSE is developed; if
P1 < condition, ELSE~ ENDIF is developed.

1-2-36

NEC

UMAS17K ASSEMBLER

(6) The GE (greater than or egual) operator

[Format]

<expression 1> AGE O<expression 2>
<expression 1> >= <expression 2>

[Function]

When the expression value on the left is smaller than or equal
to the value (evaluation) on the right, -1 (true) is returned;
and when the value (evaluation) on the left is greater than
the value (evaluation) on the right, 0 (false) is returned as

the result of the operation.

(Explanation]:
o "GE" may be entered as "»>=".
o As -1 is processed as twos complements, in hexadecimal it is

expressed as '""OFFFFH".

[Examnle]
{Example]

Condition DAT OFH] 0]
R3 MEN 1 .67H
Macro MACRO PI,P2,P3
IF P1 GE condition
SUB R1.2p2
ELSE @
SUB RI,#P3
ENDIF
ENDM

(Comments)

@ Defines a symbol.

@ Effects a macro definition. P1, P2 and P3 are temporary

parameters. If P1 > condition, IF~ELSE is developed; if
ELSE~ ENDIF is developed.

P1 < condition,

1-2-37

UMAS17K ASSEMBLER N E C

2.9.6 Shift operators
(1) The SHR (shift right) operator

[Format])
<expression 1>A SHRA <expression 2>

(Function]

The value (evaluation) of the left of the shift operator is
bit-shifted to the right the number of times of the value
(evaluation) of the right.

[Explanation]
The number of effective operation bits is 16 bits. The result

of the shift is the insertion of 0 as the MSB.

[Examples])

_Constant DAT 4578H

wemoryt MEM 0.48H
Memory2 MEM 0.4SH
Memory3 MEM 0.4AH

0. 4BH

Memory4 MEM

MOV Memoryl,# Constant AND OFH

MOY Memory2,# Constant SHR 4 AND OFH
MOY Memory3,# Constant SHR 8 AND OFH
MOV Memory4,# Constant SHR OCH AND OFH

(Comments)

In the example given above, the numeric value which has
assigned to the symbol "constant" is placed at bank 0 48H~ 4BH
in the data memory.

" AND OFH" is, with regard to DAT type expressions, used to
indicate that the lower 4 bits only are effective.

If, in the above example, " AND OFH" is omitted, an error will
be generated.

Below appears an explanation of the processing procedure in
the case in which MOV memoryj , # constant SHR 4 AND OFH.

1-2-38

N E C UMAS17K ASSEMBLER

The data 4578H is assigned to '"constant’.

lo1oo|0101]0111l1000j

4 5 7 8
‘

After executing #constant SHR 4 :

— 0000|0100 |0101 |0O111

0 4 5 7

After executing AND OFH:

[0 000 iOD 00 |0 000 [01 11]

0 0 0 7
0 is inserted as the upper bit.

1-2-39

UMAS17K ASSEMBLER N E C

(2) The SHL (shift left) operator

[Format]
<expression> A SHL A <expression 2>

[Function]

This operator bit-shifts the value (evaluation) on the left of
the shift operator to the left for the number of times of the
value (evaluation) of the right of the shift operator.

[Explanation])
The number of effective bits is 16. The result of the shift is

the insertion of 0 as the LSB.

[Example]

Memory] MEM 0.48H

SETi .FM.Memoryi SHL 4 OR 000

(Comments)

In the example given above, a symbol defined as an MEM type
symbol is being used, and 1 bit (memory 1 LSB) in the data
memory specified by that symbol is being set. SET1 is a built-
in macro instruction which sets the position flag entered in
the operand, and ".FM." is a type conversion function which
converts the memory type symbol to a flag type symbol.

The procedure for processing SET1 . FM.memoryl SHL 4 OR 0001B
is explained below. 0.48H data is assigned to memory 1.

First, memory 1 is type converted from a MEM type symbol to an
FLG type symbol. This has no effect on the value 0.48H.

IO 000 lD 000 |0 100 ‘10 00]

0 0 4 8
}

1-2-40

N E C UMAS17K ASSEMBLER

After executing memory 1 SHL 4;

LOOOOIO]OOI]OOO 0000] —
0 4 8 0

After executing OR 0001B;

[0000 0100‘1000 0001]
0 4 8 1

0 is inserted as the lower bit.—

1-2-41

UMAS17K ASSEMBLER N E C

2.9.7 Others
(1)) (parentheses) operation sequence designator

[Format]
<expression 1>operator(<expression 2>operator<expression 2>)
(<expression 1>operator<expression 2> (operator) <expression 2>

[Function]
Operations enclosed in parentheses will be executed first,

without reference to the order of priority of operators.

[Explanation]

o If parentheses are nested, expressions will be operated on
from the parentheses furthest inside.

o A maximum of 16 levels of nesting is possible.

o If the maximum number of levels of nesting is exceeded, an S

error (stack overflow) will be generated.

[Example]

Constant1 DAT 478SH
Constant2 DAT 3H
Memoryl MEM 0.48H

MOY Memoryl,#((Constanti1+Constant2)*04H)
AND OFH

(Comments),
Parentheses may be used to designate the order of priority of
operations when carrying out operations with a number of

operators.

1-2-42

N E C UMAS17K ASSEMBLER

2.10 Functions
The functions which may be used with the AS17K are as given below.

(1) The type conversion function
This function performs type conversion of symbols.
With the AS17K, the type is defined at the same time as a
value is assigned to a symbol. For this reason, it is possible
with the AS17K, when generating source programs, to detect
automatically entry errors in which the wrong symbol has been
entered. In this kind of situation, the symbol type can be
changed by using the type conversion function.

(2) The location counter function

This function returns the current location counter value.

2.10.1 The type conversion function

Whenever a symbol value is defined with the AS17K, a type is
assigned at the same time. There are types which permit entry to
operands with mnemonics, and types which do not.

If symbols of types which do not permit entry are to be used in
the operand field, a type conversion must be effected with the
type conversion function. If symbols of a type which are not
permitted are used, an O error (illegal operand type) will be
generated.

[Format])

. <type after conversion> <current type>. <symbol>

Type Description format
Data type D
Memory type M
Flag type F
Label type L
[Function]

Converts to the type evaluation designated.

1-2-43

UMAS17K ASSEMBLER N E C

[Explanation]

o The upper case letters D, M, F and L are used to express
data, memory, flag and label types within a type conversion
function.

o The type conversion function must be enclosed in periods.

[Example]
MEMORY MEM 0.38H
DATA DAT .DM. MEMORY AND 7FH
LABEL LAB 356H
FLAG FLG .FL.LABEL SHL 4+08H
Mov MEMORY, %.DL.LABEL AND OFH ; @
Moy .MF.FLAG SHR 4,4%DATA @
SET1 .FM.MEMORY SHL 4+1 HE©)
MOV .¥D.DATA,%.DL.LABEL AND OFH ; @
(Comments)

In this example, the following conversions take place:
C} Label type to data type.

C) Flag type to memory type.

® Memory type to flag type.

@ The first operand from data type to memory type.
® The second operand from label type to data type.

<Memory and flag values>
Four-nybble values are assigned to memory and label type

symbols. The evaluations of these are as given below.

Memory type symbols:
Memory type symbols are defined by delimiting bank numbers and
addresses with bit segment indicators (.). In these values,

1-2-44

N E C UMAS17K ASSEMBLER

the value of the address below the bit segment indicator is
assigned to the second nybble from the bottom, the bank number

is assigned to the third nybble from the bottom, and this
becomes the valuation of the memory type symbol, as shown in
the diagram below.

0 Bank number Address
i i i 1

Evaluation of a memory

t bol’
ype sym HSB LSB

For example, the evaluation of the memory type symbol defined
as 1.23H is 0123H.

Flag type symbols:

A flag type symbol is defined and delimited by bit segment
indicators for the bank number, address and bit position. Of
these values, the bank number is assigned to the highest or
fourth nybble, while the address remains as it is in the
following two nybbles after the bank number. However, the bit
value is 1, 2, 4 or 8 to correspond with bit positions 0, 1, 2
or 3. That is to say, the value relates to the bit position.

Bank number Address Bit
T T T 1

Evaluation of a flag

type symbol ~ ceeeees
MSB LSB

For example, the evaluation of the flag type symbol defined as
3.08H.2 is 3084.

In the example given above, also, the value of the symbol
"MEMORY" is 00038H, and the value of FLAG is 3568H (bank 3
address 56H bit position 3.

1-2-45

UMAS17K ASSEMBLER N E C

2.10.2 The location counter function
This function indicates the current location counter value.

[Format]
$

[Function]
This function indicates the current location counter value.

[Explanation]
It is possible, by using $, to execute references to relative

addresses easily.

[Examﬁle]

Memory MEM 0 .47H

ADD Memory,#01H
SKT Memory, #01H

BR $-2

(Comments)
In the.example given above, "$-2" "(the current location
counter)"-2 is expressed. It is possible to display relative

addresses by combining $ with another operator.

1-2-46

N E C UMAS17K ASSEMBLER

2.11 Variables used when assembling

These variables are entered into a source program; their values
are defined when assembling starts, and through this it becomes
‘possible to control assembler operations.

2.11.1 2ZZn

[Function]

SET definition directives entered in assemble options and
source programs are symbols which can be used to assign
values. These symbols are DAT type symbols. Values specified
by the assemble option are set when éssembling starts up.
They are handled in the source program as DAT type symbols,
and it is possible by using the SET definition DIRECTIVE to
alter values whenever required.

[Format]
Designated with the assemble option.

/22Zn=m

n: 0 to 9 10 values may be set from 2220 to 2229.

m: desired value It is possible to define values in up
to 16 bits. Values may be expressed in
binary (B), octal (O or Q), decimal (D)
or hexadecimal (H). However, if
character constants or operation
expressions are entered, an invalid
option message will be generated, and
assembling will halt. If no designation
has been made with the option, the
default value will be set as 0.

[Explanation]

o DAT type symbols can be used in exactly the same way in
source programs.

o If no designation is made with the option, the initial value
will default to 0.

O A PUBLIC declaration cannot be made with Z2Z2Zn.

1-2-47

UMAS17K ASSEMBLER N E C

o When programs are split into modules, the values designated
by the assemble option will be reset when the assembling of
that module begins.

[Example]

Below is an example of a source program using ZZZn.

MAC NACRO X
X

IF

MOV MEMOO #7227 ;@
ELSE :

WOV MEMO1 ,82227 e
ENDIF

ENDN .

MAC 2220 o)

2220 SET I
MAC 2220 @

The comments relate to the situation in which the program
given above is assembled using the sequence file TEST.SEQ
illustrated below.

; TEST.SEQ FILE
; DEV FILES
D17000.DEY
; OPTION LIST
/L1S/RO¥=70
/1220=0H
/1227=0FH
; SOURCE FILE
TST17000. ASK

(Comments)
In this example, the assemble option switches 2220 and ZZZ7
are assigned respectively to OH and OFH. With the macro "MAC",
the value of the parameter X determines whether (D or @ is
developed. At @), because the parameter 2220 value is 0H as
designated by the option,) is developed. At @), because the
parameter 2zz0 value is 1H, which was assigned immediately
prior, (0 is developed.

1-2-48

N E C UMAS17K ASSEMBLER

2.11.2 ZZZSKIP

[(Function]

22ZSKIP is a variable whose value is set selectively according
to the conditions obtaining at assemble time. If the statement
generating the object immediately prior to 22ZSKIP is a skip
instruction (SKE, SKNE, SKGE, SKLT, SKT, or SKF), or if it is
a built-in macro instruction with a skip function (SKTn or
SKFn), Z22ZSKIP is set to -1(0FFFFH); if this is not the case,
it is set to O.

[Example]

SKT1 MACRO FLAG

IF .DF.FLAG AND 80OH O]
N3 LAB N2+l
IF 22ZSKIP
BR NI
BR N3 @
ENDIF
N1:
PEEK ¥R,.MF.(FL AG SHR4) AND OFH J
SKT * WR.#.DF.FLAG AND OFH
N2:
ELSE
SKT .MF.FLAG SHR 4,%.DF.FLAG AND OFH ; ®
ENDIF
ENDM
SKE AA, %2
SKT1 INTF JINTF is the flag in the J @
BR ABC register file.
OVE BB, 21
SKT1 INTF] ®
BR EFG

(Comments)

At (D , the flag is set to DAT type, and a check is made of
whether or not it is a flag in the register file at 800H. If
it is the case that it is a register file flag, (@ is
developed; otherwise, C) is developed.

1-2-49

UMAS17K ASSEMBLER N E C

Macro development at @ is as set out below.

g%E ﬁ';?' Result of

BR N3 developing
[N1:) PEEK WR,.NF.(INTF SHR4) AND OFH

SKT WR,%.DF. INTF AND OFH SKTI INTF.
[N2:] BR ABC

[N3:]

In the case of

MOY BB, %1 The result of
PEEK WR,.F.(INTF SHR4) AND OFH -

SKT WR.%.DF.INTF AND OFH] developing

BR ABC SKT1 INTF.

1-2-50

N E C UMAS17K ASSEMBLER

3.1

CHAPTER 3 DIRECTIVES AND CONTROL INSTRUCTIONS

An Outline of Directives and Control Instructions

The basic function of an assembler is to convert instructions into

machine language. The purpose of directives and control instruc-

tions is to make the assembler easier to use, and generate lists

which are easier to read. Directives and control instructions are

not converted to machine language; they instruct the assembler

itself. Built-in macro directives, however, are converted into

machine language.

Directives are classified as follows:

(1) The location counter control directive

(2)

(3)

(4)

(5)

(8)

(9)

ORG

Symbol definition directives

DAT, MEM, FLG, LAB

SET

Public definition and reference directives
PUBLIC ~ BELOW ~ ENDP

EXTRN

Data definition directives

DW, DB

Assemble directives with conditions
IF ~ ELSE~ ENDIF

CASE ~ EXIT~ OTHER~ ENDCASE
Iteration directives

REPT ~ ENDR

IRP ~ ENDP

EXITR

The macro definition directive
MACRO ~ ENDM

The symbol global declaration directive in macros
GLOBAL

The assemble terminate directive
END

1-31

UMAS17K ASSEMBLER N E C

The control instructions are as follows:

(1) Output list control instructions
TITLE
EJECT
LIST, NOLIST
SFCOND, LFCOND
C14344, C4444
(2) Macro development print control instructions
SMAC
NOMAC
OMAC
LMAC
(3) Source input control instructions
INCLUDE
EOF
(4) Documentation generation control instructions
SUMMARY
;- (TAG)

3.2 Directives

Directives may be entered in the AS17K Mnemonic field. Directives
correspond to the individual device being used, and are supplied
in a device file. For details, please refer to the device file
operating manual for each product. The appendix also contains some
information on directives for various devices.

3.2.1 The location counter control directive

1-3-2

N E C UMAS17K ASSEMBLER

ORG ORIGIN ORG

Symbol Mnemonic Operand Comment

[Label:] ORG <expression> [;comment]
<expression> = <numeric value>

[}

<numeric value><operator><numeric value>
<LAB type symbol>

<LAB type symbol><operator><numeric value>

<LAB type symbol><operator><LAB type symbol>
<expression(LAB type)><operator><numeric value>
<expression(LAB type)><operator><LAB type symbol>

[Function]

Sets the location counter value.

[Applications]

(1)

The uPD17000 series program memory is segmented into 8K steps.
ORG must be entered at the start of each segment (however,
segment 0 (addresses 0000H to 1FFFH) is not needed).

(2) Designates a table area start address. This ensures that there
will be no effect on the table area address if changes are
made before the table area address.

[Explanation]

(1) Symbols may also be used in the Operand field, but they must
previously have been defined as LAB type symbols.

(2) If no address is designated with the ORG directive at the
beginning of the program, the assembler will assign address
0000 to the location counter.

(3) If the address value designated with the ORG directive is
lower than the previous location counter value, an O error
(ORG address error) will be generated.

(4) Type conversion is necessary if differing types are used.

(5) Wwith labels attached to ORG directives, the immediately prior

location counter value is assigned.

1-33

NEC

UMAS17K ASSEMBLER

[Example]
MoY ARO, %.DL.Reference_data AND OFH
MOV ARl1,%.DL.Reference_data SHR 4 AND OFH
MOV AR2,4.DL.Reference_data SHR 8 AND OFH
Moy AR3, 4.DL.Reference_data SHR 12 AND OFH
ADD ARG, A
ADDC ARO, #0
ORG T00H

Reference_data !
) 1234H

D¥ 2344H
D¥ 5678H

(Comments)

The above is an example of a reference to a table area. The first

address in the table area is defined with the ORG directive, and

the MOV instruction is used to store table addresses subsequent to
700H in the address register (ARO ~AR3).

3.2.2 symbol definition directives

Symbol definition directives are instructions which are used to

define as desired numeric values,

data memory addresses, flags or

labels. With the AS17K, symbol types are fixed so as to reduce the

incidence of bugs in programming. These instructions are also

useful when debugging, when generating documentation and when

using the convenient memory map generation function. The AS17K

provides the following four types of symbols.

Svm
Sym

bhol definition Tvne
nition lype

directive name

DAT
MEM
FLG
LAB

Data type

Data memory address type
Flag type

Label type

(DAT type)
(MEM type)
(FLG type) .
(LAB type)

1-3-4

N E C UMAS17K ASSEMBLER

DAT DATA DAT
Symbol Mnemonic Operand Comment
Name DAT <expression(DAT type)> [;comment])

<expression(DAT type)>=<numeric expression>

=<DAT type symbol>
=<numeric value><operator><numeric value>
=<DAT type symbol><operator>
<numeric value>
=cexpression(DAT type)><operator>
<numeric value>
=<expression(DAT type)><operator>
<DAT type symbol>

[Function]

This instruction assigns the value of the expression entered as
the operand to the name entered in the Symbol field. The name type
is data type.

[Applications])

This directive may be used to give a meaningful name to immediate
data which is not numeric data.

[Explanation]

(1)

(2)
(3)

(4)

Any symbol entered in the Operand field must have already been
defined as a DAT type symbol.

Names must always be delimited by spaces or tabs.

Since, if an error is made in entering a symbol or a mnemonic,
its name will not be registered, statements which reference
that name will also generate errors. In the case of an operand
entry error, 0 is assigned to the name.

Names defined with the DAT directive may not be redefined with
different values within the same module.

Type conversion is necessary if using a symbol of a differing
type.

1-3-5

UMAS17K ASSEMBLER N E C

[Example]
Wwait_five_minutes DAT 5 HO;
Wait_ten_minutes DAT Wait_five _minutes + Wait_five_minutes 1 ®

Mov Time_counter, §Wait_five_minutes ;@

(Comments)

(1) The immediate data used at (D and @) has been defined with a DAT
directive.

(2) "wWait-ten.minutes" is defined using the "wait_five_minutes"
defined at (D and @.

1-3-6

NEC

UMAS17K ASSEMBLER
MEM DATA MEMORY ADDRESS MEM
Symbol Mnemonic Operand Comment
Name MEM <expression(MEM type)> [;comment]

<expression(MEM type)> = <expression(DAT type)>.
<expression(DAT type)>
<MEM type symbol>
<MEM type symbol>

<operator><expression(DAT) type>

<For the block <expression(DAT type)>, please refer to the

DAT directive. "." is a position segment marker.

[Function])

Assigns the value of the expression designated by the operand to

the name entered in the Symbol field. The type of that name is a
data memory address type.

[Applications]

This instruction is used in the definition of data memory,
register file, and system register addresses.

[Explanation]

(1) The position segment marker "." must be used.

If it is not
used, a T error (type error) will be generated. The

significance of using this position segment marker is
explained below.

b. m b . bank number
m . data memory address

MSB LSB

oioioio
£ [} 1

e

1-3-7

3
\/

UMAS17K ASSEMBLER N E C

(2) Names must be delimited by spaces or tabs.

(3) If errors occur when entering symbols or mnemonics, the name
will not be registered and statements which make references to
that name will generate errors. If an error is made in an

operand entry, 0 will be assigned to the name.
(4) Names defined with the MEM directive may not be redefined
within the same module.

[Examples]

y Data memory address definition

Time_position_10th_place MEN 0. 104 i
Time_position_lst_place NE§ Time_position_10th_place+1 ;
L]

@
@

ADD Time.position_1st place,tl- @
ADDC Time.position_10th pl.sr:e,iﬂ):l

(Comments)

CD The 10H address in data memory bank 0 is assigned to the name
"time_position_10th_place.”

@ The next address (11H) is assigned to "time_position_1st._
place".

® at 3, 1 is added (time_position_10th_place, time_position-1st-
P P
place.)

1-3-8

N E C UMAS17K ASSEMBLER

FLG FLAG FLG
Symbol Mnemonic Operand Comment
Name FLG <expression(FLG type)> [;comment]

<expression(FLG type)>

= <expression(DAT type)>.
<expression(DAT type)>.
<expression (DAT type)>
<expression(MEM type)>.
<expression (DAT type)>

= <FLG type symbol>

The block <expression (DAT type)>, refers to the DAT

directive; for the <expression (MEM type)> block, please
refer to the MEM directive. "." is the position segment
marker.

[Function]

Assigns the value of the expression designated by the operand to
the name entered in the Symbol field. The type of the name is FLAG
type.

[Applications]
This instruction is used to define 1 bit in the data memory,

register file or system register.

[Explanation]

(1) The position segment marker "." must be used. If it is not
used, a T error (type error) will be generated. The use of the
position segment marker is explained below.

1-3-9

UMAS17K ASSEMBLER N E C

b: bank number
b m P m: data. memory address
. ’ p: bit position (ineffective other than 0, 1, 2, 3,)

MSB LsB
Value |p' (evaluation. |Designated bit
mlaielo of p |of p) position
wlototo 0 1 Bit 0 (LSB)
) § oot ot
mi@iM@ia 1 2 Bit 1
2 4 Bit 2
< b —> m P ‘._>‘ 3 8 Bit 3 (MSB)

(2) Names must be delimited by spaces or tabs.

(3) If errors occur when entering symbols or mnemonics, the name
will not be registered and statements which make references to
that name will generate errors. If an error is made in an
operand entry, 0 will be assigned to the name.

(4) Names defined with the FLG directive may not be redefined
within the same module.

1-3-10

NEC

UMAS17K ASSEMBLER
[Example]
; List of FLAGS
24_hour._display_flag - FLG 0.204.1 O]

s I/0 terminal
Buzzer_terminal

LCD_display._0
AM_display
PM_display

Colon _display

Timer_display

FLG

} Assigned to LCD display

MEM

. FLG

FLG
FLG
FLG

.

SKF1 24_hour_display_flag J ®
CLR2 AM_display, PM_display

POAl '@

0.60H

LCD_display 0.3
LCD_display 0.2 | ®
LCD_display 0.1
LCD_display 0.0

(Comments)

At), the data memory address desired is selected directly, and 1

bit within it is defined.

At @, the name (POA1) registered in 2 bits of port A in bank 0
with reserved words is altered to a name ("buzzer_terminal") which

is used in that program.

At(:) the memory desired is defined with an MEM type, and each bit
is allocated as an FLG type.

At C) if the 24_hour_display.flag is 1, the AM_dBNayand PM_display

flags are set.

1-3-11

UMAS17K ASSEMBLER N E C

LAB LABEL LAB
Symbol Mnemonic Operand Comment
Name LAB <expression(LAB type)> [;comment]

<expressionLAB type)> = <numeric value>

]

<LAB type symbol>

<numeric value><operator>

<numeric value>

]

<(LAB type symbol)><operator>
<numeric value>

<expression (LAB type)><operator>
<numeric value>

¢<(LAB type symbol)> <operator>
<LAB type symbol>

[Function]
Assigns the value of the expression designated in the Operand

field to the name entered in the Symbol field. The type of the
name is label type.

[Application]
The LAB directive is used when it is desired to use a different
name for a name entered in the label field.

[Explanation]

(1) Any symbol entered in the Operand field must have already been
defined as a LAB type symbol.

(2) Names must always be delimited by spaces or tabs.

(3) Since, if an error is made in entering a symbol or a mnemonic,
its name will not be registered, statements which reference
that name will also generate errors. In the case of an operand
entry error, 0 is assigned to the name.

(4) Names defined with the LAB directive may not be redefined with
different values within the same module.

1-3-12

N E C UMAS17K ASSEMBLER

(5) Type conversion is necessary if using a symbol of a differing
type. '
(6) If the value of an expression in the Operand field is not

within the range permitted for the program memory address for
that product, an R error (ROM address error) will be

generated.
[Examples]
T_" Module 1

' PUBLIC Module _1_flag._reset

Flag_reset:
CLR3 FLAGI,FLAG2,FLAG3

Module _1_flag _reset LAB Flag_.reset
RET

—-l Module 2

EXTRN LAB: Module _1_flag reset

CALL Module _1_flag reset
CALL Flag_reset

Flag_reset .

CLR2 Fl,F2

RET

1-3-13

UMAS17K ASSEMBLER N E C

(Comments)

In this example, module 1 and module 2 have the same flag_reset
label, and the module_1_flag_reset is used in module 2. Normally,
when using a label from another module, PUBLIC and EXTERN
declarations are carried out, but in this example, where the name

is the same, another name must be amended and used. So, using the
LAB directive, flag_reset inthe module 1 is defined as the separate
name module_1_flag_reset.

1-3-14

N E C UMAS17K ASSEMBLER

SET SET SET
Symbol Mnemonic Operand Comment
Name SET <expression> {;comment]
<expression> = <numeric value>

<expression (DAT type)>

n

<expression (MEM type)>
= cexpression (FLG type)>
<expression (LAB type)>

(<expression> = <numeric value> is DAT type)

For more cn the above four blocks, please refer to the
directive for each symbol.

[Function]

Assigns the value of the expression entered in the Operand field
to the name entered in the Symbol field. The type of the name and
the type of the expression must be the same. However, numeric
values with no position segment marker will automatically become
data types.

[Applications]

This instruction is used when setting temporary parameters with
the assemble directive with condition attached (IF~ LSE~ ENDIF,
CASE ~EXIT~ OTHER~ ENDCASE) or the iteration directives (REPT~
ENDR, IRP~ENDP and EXITR), or if setting variables when
assembling such as Z22Zn or ZZZSKIP.

[Explanation]

(1) Names must be delimited by spaces or tabs.

(2) If errors occur when entering symbols or mnemonics, the name
will not be registered and statements which make references to
that name will generate errors. If an error is made in an ,

operand entry, 0 will be assigned to the name.

1-3-15

UMAS17K ASSEMBLER N E C

(3) The type of the name defined by the SET directive will be the

same as the type of the symbols comprising the expression
entered in the Operand field.

(4) Note that the built-in macro instruction SETn is a different
directive.

(5) If a name has been defined with the SET directive, and it is
desired to redefine it with the same name, the type cannot be
changed, but the detail of a name of the same type can be
changed with ease.

(6) Symbols which are defined by the SET directive will have no
effect on memory maps or flag maps.

[Examples]

If the condition is 1, MO is 10H in bank 0.
-If the condition is 2, MO is 20H in bank 0.

iIf the condition is 3, MO is 30H in bank O.
In other cases, MO is 00H in bank 0.

¥00O MEM 0.O0CH
MO10 MEM 0. 10H
M020 MEM 0.20H
MO30 WEM 0. 30H

Condition DAT 1 ; ©
MO SET MOOO
IF Condition = 1 ; If the condition
MO SET -M010 is 1.
ENDIF
IF Condition = 2 ; If the condition
MO SET MO20 is 2.
ENDIF
IF Condition = 3 ; If the condition
MO SET KO30 is 3.
ENDIF
MOV MO, %0

(Comments)

At(), the condition is set as 1. Therefore, in the above example,
MO becomes the 10H address in bank 0.

1-3-16

N E C UMAS17K ASSEMBLER

3.2.3 Public definition and public reference directives
These directives refer to or define symbols which are used jointly

by more than one module.

External definition directive
PUBLIC~BELOW~ ENDP

External reference directive
EXTRN

1-3-17

UMAS17K ASSEMBLER N E C

PUBLIC PUBLIC PUBLIC

BELOW BELOW BELOW

ENDP END PUBLIC ENDP
Format 1:

Symbol Mnemonic Operand Comment
[Labels:] PUBLIC <symbol group> [;comment]

<symbol group> = <symbol>

= <symbol>, <symbol>
= <symbol group>, <symbol>
Format 2:

Symbol Mnemonic Operand Comment
[Labels:) PUBLIC BELOW [;comment]
[name DAT <expression (DAT type>] [;comment]
[name MEM <expression (MEM type>] [;comment]
[name FLG <expression (FLG type>] [;comment]
[name LAB <expression (LAB type>] [;comment]

ENDP
[Function)

There are two formats for the public definition directive. In the
first format, a declaration is made that the symbol entered in the
Operand field is referenced in another module. In the second
format, a declaration is made that the symbol defined in the block
enclosed by "PUBLIC BELOW" and 'ENDP" is referenced in another

module.

[Application)

Declares that a symbol is referenced in another module.

1-3-18

N E C UMAS17K ASSEMBLER

[Explanation]

(1) The public definition directive may be entered at any positioén
in a source program.

(2) In format 1, it is necessary to define a publicly declared
symbol using the symbol definition instruction in the same
module. If a symbol for which this has not been done is
entered, an S error {undefined symbol) is generated.

(3) In format 2, the symbol defined may be used as a symbol within
a module.

[Example]

(Example 1}

PUBLIC Hour-10th-place, Hour-lst-place, Minute-10th-place, (:)
Minute-lst-place, Wait-5-minutes 4

Hour-10th-place MEM 0.10H
Hour-1lst-place MEM 0.11H
Minute-10th-place MEM 0.12H
Minute-lst-place MEM 0.13H
Second-10th-place MEM 0.14H

Wait-5-minutes DAT 5

(Comments)

In example 1, format 1 is used to make a public declaration. at (0),
the five symbols "Time_10th_place", "Time_1st_place","Minute _10th.
place"”, "Minute_1st_place" and "wait_5_minutes" are publicly

defined.

1-3-19

UMAS17K ASSEMBLER N E C

(Example 2)

PUBLIC BELOW
Hour-10th-place MEM 0.10H
Hour-lst-place MEM 0.11H
Minute-10th-place MEM 0.12H @
Minute-1st-place MEM 0.13H
ENDP
Second-10th-place MEM 0.14H
PUBLIC BELOW ; @
Wait-5-minutes DAT 5
ENDP

(Comments)

Example 2 shows the same detail as is used in example 1 with
format 2 applied. The four symbols "Hour_10th _place", "Hour_1st _
place", "Minute_10th_place" and "Minute_lst_place" are enclosed by
"pUBLIC BELOW" and "ENDP" at @ and publicly declared. At @), there
is a public declaration in format 2 of "Wait.S_minutes".

1-3-20

N E C UMAS17K ASSEMBLER

EXTRN EXTERN EXTRN
Symbol Mnemonic Operand Comment
[Label:] EXTRN <expression>: <symbol group> [;comment]
<expression> = DAT <symbol group> = <symbol>

= MEM =<symbol>, <symbol>

= FLG = <symbol group>,

= LAB <symbol>

However, the types in the <expression> and <symbol group>
in the Operand field must agree.

[Function]

Declares that there is a reference in the current module to a

symbol, entered in the Operand field, which has been publicly
declared in another module.

[Application]

This instruction makes it possible to make use in the current

module of a required symbol which is publicly declared in another

module.

[Explanation])

(1)

(2)
(3)

With the EXTRN directive, the symbol which is declared must be
entered in that module before the reference is made.
<expression> and <symbol> are delimited by en columns.

If a symbol of a type other than that designated in the
expression is entered, a T error (invalid type error) will be
generated.

1-3-21

UMAS17K ASSEMBLER N E C

[Example]

Module 1

!

PUBLIC BELOW

Hour_10th_place NEM 0.01H

Hour _1st_place MEX 0.02H

Wait_S5_minutes DAT 5
ENDP

Module 2

!

PUBLIC Attention_flag

Attention_£flag FLG 0.10H.1

Module 3

EXTRN MEM: Hour_10th_place
EXTRN DAT: Wait_S.minutes

Module 4

| [

EXTRN MEM: gour _10th_place, Hour_ ist_ place
EXTRN FLG: Attention_flag

(Comments)
In modules 1 and 2, a symbol used in modules 3 and 4 is publicly
declared. Of the symbols publicly declared in modules 3 and 4,

_________ Dols pPuUublicly declared 1n modules 3 and

only the symbol used is EXTRN declared.

3.2.4 Data definition directives
The data definition directives define table area data. There are
two varieties of data definition directive:

DW: defines 16-bit length data.
DB: defines 8-bit length data.

1-3-22

N E C UMAS17K ASSEMBLER

DwW DEFINE WORD Dw
Symbol Mnemonic Operand Comment
{Label:] DW ¢<16-bit data> [;comment]

<16-bit data group> =<expression(DAT type)>

="' <character>

[Functions]

Assigns the 16-bit data entered in the Operand field to the
current location counter value (program memory address) and object
code.

[Application] .
This instruction is used when defining 16-bit unit data in the
table area.

[Explanation]
<expression (DAT type)> and <character> should be entered as
follows:

o The range of <expression (DAT type)> is as follows:
Decimal: 0 = <expression (DAT type)> =65535
Hexadecimal: 0 =<expression (DAT type)> =OFFFFH

=

Binary: 0 <numeric value> = 1111111111111111B

DW 'A' —— object code : 0041H

1-3-23

UMAS17K ASSEMBLER N E C

[Example]

MOY ARO,%#.0L.rable AND OFH

Table:

DY 1234H
0¥ 0’

(Comments)
In the example given above, "table"is the data area, and each
datum is defined with the DW directive.

1-3-24

N E C UMAS17K ASSEMBLER

DB DEFINE BYTE DB
Symbol Mnemonic Operand Comment
[Label:] DB <8-bit data group> [;comment]

<8-bit data group> <expression(DAT type)>

'<character string»'

[

<8-bit data group>,
<expression (DAT type)>

<8-bit data group>,
'<character string»'

[Functions]

Assigns the characters or expression entered in the Operand field
to the current location counter value (program memory address) as
an 8-bit object code.

[Application]

Used in defining table area data.

[Explanation]

(1)

It is possible to designate up to 32 individual operands
delimited by commas. If more than this number is entered, a C
error (operand count error) is generated.
Character constants enclosed in quotation marks

may be converted to 8-bit ASCII
codes and up to 32 characters entered.

Where codes are 8-bit only, 0 will appear in the lower 8 bits.
DB 'A' —> object code : 4100H

1-3-25

UMAS17K ASSEMBLER N E C

[Examples])
DB 01AH
DB Y

DB ' ABCDEFGH [JKLMN’
DB - OFFH,OFFH OFFH

3.2.5 Assemble directives with conditions

The effective use of assemble directives with conditions can lead
to more efficient programming, and the development of a source
program library. There are two types of assemble directives with

conditions:

IF~ ELSE ~ENDIF
CASE ~ EXIT~ OTHER~ ENDCASE

1-3-26

N E C UMAS17K ASSEMBLER

IF IF I F
ELSE ELSE ELSE
ENDIF ENDIF ENDIF
Symbol Mnemonic Operand Comment
[Label:] IF <Expression (DAT type)> [; comment]
Statement
[ELSE] [; comment)
Statement
L J
ENDIF [; comment]
[Functions)

(1)

(2)

IF and ENDIF

If the evaluation of an Operand field IF statement is a value
other than 0 (false), the statement enclosed by IF and ENDIF
will be assembled.

If the evaluation of the IF statement in the Operand field is
0 (false), the statement enclosed by IF and ENDIF will not be
assembled.

IF and ELSE and ENDIF

If the evaluation of an Operand field IF statement is a value
other than 0 (false), the statement enclosed by IF and ELSE
will be assembled, but the statement enclosed.by ELSE and
ENDIF will not be assembled. If the evaluation of the Operand
field IF statement is 0 (false), the statement enclosed by IF
and ELSE will not be assembled, but the statement enclosed by
ELSE and ENDIF will be assembled.

[Application]

This instruction is used to select a statement which is developed

in accordance with some routine in a program, and its conditions

of use.

1-3-27

UMAS17K ASSEMBLER N E C

[Explanation]

(1)

(2)

(3)

(4)

(5)

All statements enclosed between an IF and its corresponding
ENDIF are defined as the IF~ ENDIF block.

Since ELSE is an option, it is not always necessary to
designate it. However, if it is designated, it may only be
used once in an IF~ENDIF block. If ELSE is designated more
than once, an S error (syntax error) will be generated.

Any symbol entered in an Operand field IF statement must have
been previously defined.)

Up to 40 levels of nesting are possible, including built-in
macro instructions, macro reference statements, and REPT, IRP
and CASE statements.

It is not possible to enter labels in ELSE and ENDIF
statements.

[Examples]
(Example 1)

i

i

i

List of conditional items. HO)

12_hour_display DAT O
24_hour_display DAT {

Condition setting table |
Time_display-conditions DAT 12_hour.display

Setting the time displayed first with the time)
IF Time_display_conditions
; 12 hour display
MOY Hour_i10th_place ,}]

ELSE.

; Performs 24 hour display
MOV Hour_10th_place .%0

ENDIF

1-3-28

N E C UMAS17K ASSEMBLER

[Comments]

In the above example, a time display is selected using the IF
directive.

At @, the condition items used at @ are listed.

At (@, the desired object is selected from the list at Q.
At @), what is required is developed in accordance with the
condition items set at @.

For example, statements within IF~ELSE are developed.

[Example]
(Example 2)

ADB MACRO AB ~
IF (.DM.A SHR 8)=(.DM.B SHR 8)

ADD LB
ELSE @
PEEK ' WR,BANK
Xov BANK ,%.DM.B SHR 8
ADD AB -
POKE BANK ,HR
ENDIF
ENDM J
%00 HEM 0.10H
%01 WEM 0.11H

DATA DAT 03H
ADB MOO,DATA ;@

ADB MOI1,DATA HE)

(Comments)

ADB at (D) is a macro which adds together a register A and a memory
B. Whatever bank B is, automatic bank switching is effected with
the directive.

At @, the addition of the same bank memory is displayed.

At @, the addition of a different bank memory is displayed.

1-3-29

UMAS17K ASSEMBLER N E C

CASE CASE CASE
EXIT EXIT EXIT
OTHER OTHER OTHER
ENDCASE ENDCASE ENDCASE
Symbol Mnemonic Operand Comment
[label:] CASE <expression (DAT type)> [;comment]
<numeric value>: [;comment)
[Statement]
[EXIT] [; comment]
<numeric value> [;comment]
[Statement]
[EXIT]) [;comment]
[OTHER:]
{ Statement }
ENDCASE [;comment]
[Functions])

This instruction assembles the statement which is enclosed between
the numeric value label of the evaluation of <expression (DAT
type)> entered in the CASE statement in the Operand field, and
ENDCASE. If there is an EXIT occurring in the process, the
assemble operation will bypass what is between the following
statement and ENDCASE. If there is no numeric value label
corresponding to the value of <expression (DAT type)>, the
statement between the OTHER and ENDCASE statements will be
assembled. However, OTHER must be entered at the end of the
numeric value label.

1-3-30

N E C UMAS17K ASSEMBLER

[Application]

This is used to select the statement to be developed in accordance

with the conditions of use in a routine in a program.

[Explanation]

(1)

(2)

(4)

(5)

Numeric value labels or comments only can be entered in the
line containing the numeric value label. The numeric value
label is a integer value up to 1 = X =65535. If the same
numeric value label is entered in the same block twice or
more, the numeric value label entered last will be the
effective one.

All statements included between CASE and its corresponding
ENDCASE are defined as the CASE- ENDCASE block.

Up to 40 levels of nesting are possible, including the nesting
of built-in macro instructions, macro reference statements,
and IF, IRP and REP statements.

Numeric value labels may be entered in whatever order is
desired.

If a numeric value label is entered at the end of an OTHER
statement, an S error (syntax error) will be generated.

[Example]

(Example 1)

3: t

OTHER: T

CASE N

ADD MEMOO, #1H When N = 3

ADD MEMO1, #1H

ADD MEMOZ2.%1H t

EXIT 44 4

ADD MEMO3, #1H When N # 1, 2 or 3

ENDCASE 4

1-3-31

UMAS17K ASSEMBLER N E C

(Comments)

The above four programs are developed from a CASE statement N.

-[Example]
(Example 2)

CASE 2220 O]
0:
Hov H1,%0
MoV N2, 40
EXIT
1:
MoV N1, %1 ©]
Mov 2,41
EXIT
2:
ov M1, 42
MoV N2, 42
ENDCASE
A>AS17K D17000.DEV /2220=1/ TEST.ASH ®

(Comments)

In the above example, the program makes use of the asemble
variable 2ZZZ0 CASE directive.

At (), 2220 is entered in the CASE Operand field by designating the
value 2220 when assembling, and the corresponding section is
developed. @ is an example of what is entered when starting up the
assembler. By designating the assemble option '"Z220=1", 1 is
registered at 2220 in the program. In the example, the point Q) is
developed.

3.2.6 Iteration directives
The effective use of iteration directives can make programming

more efficient. There are two types of iteration directives:

REPT ~ (EXITR)~ ENDR
IRP ~(EXITR)~ ENDR

1-3-32

N E C UMAS17K ASSEMBLER

REPT REPEAT REPT
ENDR ENDREPEAT ENDR
Symbol Mnemonic Operand Comment
[Label:] REPT <expression (DAT type)> [jcomment]
r -
Statement
[EXITR] [;commenE]
r 3
Statement
ENDR [;comment)
[Function])

The statement enclosed by REPT and ENDR is developed repeatedly,
the number of repetitions being the value of the evaluation of the
<expression (DAT type)>.

If EXITR occurs between an REPT and an ENDR, development will
terminate, and assembling will continue from the next statement
after ENDR.

[Application]

This instruction is used to repeat the same statement.

[Explanation]

(1) Up to 40 levels of nesting are possible, including nesting of
built-in macro instructions, macro reference statements, and
IF, IRP and CASE statements.

(2) Symbols used in the <expression (DAT type)> must have been
previously defined.

1-3-33

NEC

UMAS17K ASSEMBLER
[Example]
Table_end LAB TFFH o)
Table .) 1 ®
D¥ 11114
D¥ 11124

Unused table:
REPT .DL.(Table_end - unused._table)]
®

D¥ 0000H
ENDR

(Comments)
Above is a program which assigns 000H to an unused table area. At

(@, first the symbol used at ® is defined. If it is defined after
REPT ENDR, an error will be generated. (2) indicates the beginning
of the table. At @), using the REPT directive, 0000H is assigned to

the unused table.

1-3-34

N E C UMAS17K ASSEMBLER

IRP INDEFINITE REPEAT IRP

ENDR END REPEAT ENDR

Symbol Mnemonic Operand Commnet

{Label:] IRP <Temporary Parameter>, [;comment]

<Actual Parameter Group>

[Sstatement]
[EXITR] [;comment]

[Statement]
ENDR [; comment]

<Actual parameter group> = <(expression (DAT type)>
<(expression (LAB type)>

]

<'character string>'

= <permanent parameter group>,
<expression(DAT type)>

<permanent parameter group>,

<expression (LAB type)>

U]

(permanent parameter group>,
'<character string>'

[Function]

This instruction replaces all temporary parameters in a statement
enclosed by IRP and ENDR with permanent parameter groups in order
from the left, and develops the data number of the permanent
parameter groups in the statement enclosed by IR and ENDR. If
EXITR appears between IRP and ENDR, development will halt, and
assembling will continue from the next statement after ENDR.

[Application]

This is used when carrying out repeated definitions of similar
statements.

1-3-35

UMAS17K ASSEMBLER N E C

[Explanation]

(1) Up to

40 levels of nesting are possible including the nesting

of built-in macro instructions, macro reference statements,
and IF, REP and CASE statements.
(2) The entry format for permanent parameter groups is the same as

the entry format for permanent parameter groups in macro

references.

(3) If no

permanent parameter group is entered, a NULL code is

presented.

(4) Only one temporary parameter may be entered.

(5) The entry format for the temporary parameter is the same as
that for symbols.

[Example]

OR

OR

IRP DATA,O,1,2
SKNE AAA, 2&DATA

SKNE BBB, #(DATA+1)

ENDR

AL, #(1 SHL DATA)

B1,#(10008 SHR ‘DATA)

[Comments]

The above example is developed as follows:

SKNE
OR
SKNE
OR

SKNE
OR
SKNE
OR

SKNE
OR
SKNE
OR

AAA,O

Al First time
BBB, 1

B1,8

AKA, L
Al,2 . Second time
BBB, 2
B1,4

AAAL2

AlL4 Third time
BBB,3
B1,2

1-3-36

N E C UMAS17K ASSEMBLER

In this example, the value of memory A1 and B1 takes DATA OR and
is stored at A1 and B1. In the first case, 0 is substituted for
DATA and developed. In the second case, 1 is substituted for DATA
and developed. In the third case, 2 is substituted for DATA and

developed.

1-3-37

UMAS17K ASSEMBLER N E C

EXITR EXIT REPEAT EXITR
Symbol Mnemonic Operand Comment
EXITR [;comment]

[Function]
If EXITR appears in a REPT or IRP statement, developments halts,
and assembling continues from the next statement after ENDR.

[Application]
This instruction is used in debugging, when it is desired to halt
temporarily or prohibit the use of iteration directives.

[Explanation]

(1) This instruction is only effective in REPT~ENDR and IRP~ENDR
instructions.

(2) If EXITR is entered in other than one of the two blocks

mentioned above, a P error (invalid EXITR statement) will be

generated.
[Example]
Table end LAB TFFH
Table: DR 11114

oY 1128

Unused table:
REPT. .DL.(Table_.end - unused_table)
EXITR
D¥ 000CH
ENDR

1-3-38

N E C UMAS17K ASSEMBLER

{Comments)

The above example shows the halting of processing between REPT and
ENDR.

3.2.7 Macro definition directives

If the same routine is to be used a number of times in a program,
it is generally possible to use procedures which employ
subroutines to reduce the number of programming steps. In cases
where parameters are different, in processing routines which
closely resemble each other but for which subroutines cannot be
used, macro functions can be used to increase programming
efficiency. The macro definition directive is used when defining
such macros. For more details please refer to Section 3.4 on Macro
Functions.

1-3-39

UMAS17K ASSEMBLER N E C

MACRO MACRO MACRO

ENDM END MACRO ENDM
Symbol Mnemonic4 Operand Commnet
Name MACRO <temporary parameter group> [;comment]

Statement (macro body)

ENDM

[Function]

This assigns a macro name to a series of statements (the macro
body) between MACRO and ENDM. The name is used as the defined name
when making MACRO references.

[Application]

This is used when macro definitions.

[Explanation]
(1) Macro body
Macro bodies are composed of macro statements, and include

symbols, instructions, and directives, MACRO ENDM and comments
excepted.

(2) Temporary parameter groups

Up to 16 temporary parameters may be entered, delimited by
commas.

Temporary parameters are only effective within macro bodies.

Permanent parameters are substituted for temporary parameters

1-3-40

N E C UMAS17K ASSEMBLER

[Example]
BADD MACRO AH,AL,BH,BL
ADD AL,BL)
ADDC AH,BH
ENDM
BADD YH.YL,ZH,ZL ' @

(Comment)
The above example shows a macro which adds 2 nybbles of memory.

(1) is the macro definition section, and (2) the macro reference

section.

3.2.8 Symbol global declaration directives in macros
The symbol global declaration directive in a macro is known as a

GLOBAL directive.

1-3-41

UMAS17K ASSEMBLER N E C

GLOBAL GLOBAL GLOBAL
Symbol Mnemonic Operand Comment
[Label:] GLOBAL <symbol group> [; comment])

<Symbol group> = <symbol>
<symbol>, <symbol>

<symbol group>, <symbol>

[Function]

Declares symbols used in macros as symbols which may be referenced
outside the macro.

[Application]

The GLOBAL directive is used when employing symbols which appear
within a macro outside that macro.

[Explanation]

(1) The GLOBAL directive may only be used within a macro
definition (a block enclosed by MACRO and ENDM). If an attempt
is made to use it otherwise, a P error (invalid pseudo) will
be generated.

(2) A global declaration must be entered before defining the
symbol it applies to. If it is entered after, an S error
(symbol multi defined) will be generated.

(3) The effective range of a symbol which is globally declared is
limited to the same source module program.

1-3-42

NEC

UMAS17K ASSEMBLER
[Example]
AAA MACRO Al
GLOBAL ABC
ABC SET Al
. 0}
ENDM
AAA 0.10H
]o
MOV ABC, %1
AAA 0.20H
Jo
Moy ABC, %2
(Comment)
The example above shows the use of the GLOBAL directive. At(i) the

symbol ABC within
directive, and it

the macro definition
is declared with the

GLOBAL

defined with the SET

directive so that it

may be used outside the macro. At (2, "0.10H" is set as the

permanent parameter.

Thus,

the symbol ABC is defined at bank 0

address10H by means of the SET directive at (). At @), the symbol
ABC is redefined at bank 0 address 20H so that it can refer to

macro AAA.

3.2.9 Assemble terminate directives

This indicates the end of a source (program) module.

1-3-43

UMAS17K ASSEMBLER N E C

END END END
Symbol Mnemonic Operand Comment
[Label:] END
[Function]

Indicates to the assembler the end of a source (program) module.

[Application]
Entered in the final line of a source (program) module.

[Explanation]
(1) An error will be generated if a line feed
(0AH) does not appear at the end of an END directive. Please
note that when using the screen editor, storage is possible
without th

line feed

o

(2) If anything other than a carriage return or a line feed is
entered at the end of an END instruction, a warning (statement
after END) will be generated, and the statement will bé
ignored.

[Example]

END

(Comment)

The above shows an END directive appearing in the final line of a
source program module.

1-3-44

N E C UMAS17K ASSEMBLER

3.3 Control Instructions

Control instructions may be entered in the Mnemonic field of the
AS17K. These instructions control the printing of macro
developments, source ;nput, documentation generation, and output
list formats after assembling is finished but before conversion to
machine language.

When control instructions and similar functions have been defined
in assemble option*, the assemble option takes priority. The
assemble options and their related control instructions are given
below. It is possible to designate which instructions are to be
effective or noneffective in the assemble option.

Control Assemble option in Assemble option in
instruction which the control which the control
instruction is instruction is
effective. noneffective.
LIST LIST NOLIST
NOLIST LIST NOLIST
SFCOND NOCOND COND
LFCOND NOCOND COND
SMAC NOGEN GEN
NOMAC NOGEN GEN
OMAC NOGEN GEN
LMAC NOGEN GEN

All control instructions are only effective within the same

module.
* Assemble options control whether or not lists are output when

assembling takes place. For further details, please refer to
Part 2, Section 4.5 on the Assemble Options.

1-3-45

UMAS17K ASSEMBLER

NEC

3.3.1 Output list control instructions

There are eight typeés of output list control-instructions, as

shown below; they are used to generate easy-to-read assemble

lists.

Output list Function Default value *
control
instruction
TITLE Prints the title of an e
assemble list.
EJECT New page f—
LIST Switches assemble lists
NOLIST output on or off LIST
Turns on and off output
SFCOND of assemble lists false
LFCOND condition blocks in assem- LFCOND
ble instruction statements
with conditions.
Designates an expression
C14344 format for an assemble C14344
c4444 list object. '

* If default values are not specifically set,

that set when there are no conditions.

1-3-46

the value will be

N E C UMAS17K ASSEMBLER

TITLE TITLE TITLE
Symbol Mnemonic Operand Comment
[Label:] TITLE 'Character string' [; comment]

[Function])
Inserts a page break in the assemble list, and prints the
character string in the Operand field as the title of the list.

[Application]
This is used to print titles on assemble lists, making the lists
easie; to understand.

[Explanation]

(1) A maximum of 87 characters may be
entered in the character string. If 88 or more characters are
entered, an I error (invalid data length) will be generated.

(2) If the TITLE control instruction appears, the assembler will
insert a page break, and print out the title designated in the
header. However, if the TITLE control instruction occurs in
one line, a new page will not be generated. Further, the TITLE
control instruction will itself be printed in the first line
after a page break is generated.

[Example]

Source program list

TITLE "SUBROUTINE®

1-3-47

UMAS17K ASSEMBLER N E C

EJECT EJECT EJECT

Symbol Mnemonic Operand Comment

[Label:] EJECT [; comment]
[Function]

Creates a page break in an assemble list.

[Application]
Used to force a page break in a routine. The page break allows the
assemble list to be more easily read.

[Explanation]

(1) If the EJECT control instruction occurs, the assembler will
insert a page break.

(i) The EJECT control instruction character string itself will be
printed on the page prior to the page break.

[Example]
Source program list.

BR ABC

EJECT
DEF:

1-3-48

NEC

UMAS17K ASSEMBLER
LIST LIST LIST
Symbol Mnemonic Operand Comment
[Label:] LIST [;comment]
[Function]

Indicates where output of an assemble

[Application]

Assemble list output may be inhibited
(for example, for definition sections
debugged) by using the NOLIST control
control instruction is used when that
negated.

[Explanation]

list is to start from.

where it is not necessary
or routines which have been
instruction; the LIST

instruction is to be

(1) When LIST is designated with an assemble option, at the start

of each module list control instruction execute status is

invoked, and a list is output. This is used to negate the
effect of the NOLIST control instruction.

(2) When NOLIST has been designated by an assemble option, an

assemble list will not be output even though the LIST control
instruction appears in a source program.

1-3-49

UMAS17K ASSEMBLER

NEC

[Example]

Source program list

MEMORY1
MEMORY2

START:

NOLIST

Data memory definition section

MEX 0.00H "
MEX 0.01H
LIsT

; Program start

1-3-50

N E C UMAS17K ASSEMBLER

NOLIST NOLIST NOLIST
Symbol . Mnemonic Operand Comment
[Label:] NOLIST { ;comment]

[Function]
The NOLIST control instruction halts the output of an assemble
list.

[Application])

Used to suppress the listing of sections which are not required
when outputting an assemble list, for example routines for which
debugging is complete, or definition sections.

[Explanation]

(1) The NOLIST control instruction is itself printed out.

(2) The number of lines in the sections which are not printed
because of the use of the NOLIST control instruction will be
counted.

(3) The NOLIST control instruction is only effective within the
one module.

(4) The NOLIST control instruction takes precedence over other
output list control instructions.

1-3-51

UMAS17K ASSEMBLER N E C

[Example]

Source program list

LIST
; Flag definition
FLAG1 FLG 0.30H.1
FLAG2 FLG 0.30H.2
FLAG3 FLG 0.30H.4
NOLIST
; Data memory definition
MEMORY1 MEM 0.00H
MEMORY2 MEM 0.01H
LIST
START ; Program start
"BR ABC
NOLIST
; SUBROUTINE

1-3-52

N E C UMAS17K ASSEMBLER

SFCOND SHORT FORM CONDITION SFCOND
Symbol Mnemonic Operand Comment
[Label:) SFCOND [;comment]

[Function]

Once the SFCOND control instruction is executed, a statement which
is skipped because of the application of a directive which judges
a condition plus the condition, will not be output to the assemble
list.

[Application]

This is used to suppress output of list sections which are not
assembled by assemble with conditions instruction statements.
This makes the assemble list easier to read.

[Explanation]

(1) The SFCOND control instruction is only effective when
designated with the assemble option NOCOND.

(2) The SFCOND control instruction is only effective within the

one module.

[Example]
Source program list

SFCOND
AAAA . SET OFFH
IF AAAA
Mov A, &5H +——— Assembled
ELSE
Moy A, %6H +—— Not assembled, and list
ENDIF not output

1-3-53

UMAS17K ASSEMBLER N E C

(Comments)
In this example, a list is output from SFCOND to MOV A, #5H, but

it is not output between ELSE and ENDIF where the condition is not
true. However, "ENDIF" is output to the list.

1-3-54

N E C UMAS17K ASSEMBLER

LFCOND LONG FORM CONDITION LFCOND

Symbol Mnemonic Operand Comment

[Label:} LFCOND [;comment]
[Function]

Once the LFCOND control instruction is set, a section which is
skipped because of the application of an assemble with conditions
directive condition, will be output to the assemble list.

[Application]

This is used when it is desired to include sections skipped
because of the application of an assemble with conditions
directive condition in an assemble list.

[Explanation])

(1) The LFCOND control instruction is effective when designated
with the assemble option NOCOND.

(2) The LFCOND instruction is only effective within the one
module.

(3) The LFCOND instruction is itself output to the assemble list.

[Example]
Source program list

SFCOND
IF A EQB .
MOY A, %5H
ELSE ®©
MOV A, #6H
ENDIF -
LFCOND
IF C NE D q
ADD C.%3H
ELSE @
ADD C,%SH
ENDIF -

1-3-55

NEC

UMAS17K ASSEMBLER

(Comments)
At (), the SFCOND control instruction is effective, so a list is

output for what is between either IF ~ELSE or ELSE ~ ENDIF. The
LFCOND control instruction becomes operative from Section ®, and

because of this the whole statement is output.

1-3-56

N E C UMAS17K ASSEMBLER

C14344 CODE1-4-3-4-4 BIT FORM C14344

Symbol Mnemonic Operand Comment
[label:] C14344 [;comment]

[Function]

Formats in the object column in an assemble list are expressed
hexadecimally as 16-bit object codes in the form 1-bit - 4-bits -
3-bits - 4-bits - 4-bits from the most significant bit after this

instruction.

[Application]
This is used after execution of the C4444 instruction, when it is
desired to output in C14344 format.

[Explanation]

(1) When neither the C14344 or C4444 control instructions are
designated, the C14344 instruction is effective. It designates
the object code output format for assemble lists.

(2) Data defined by the DW and DB directives may be output in
C4444 format (4-bits - 4-bits - 4-bits - 4-bits), which is
unrelated to the C14344 control instruction.

[Example]
Source program list

C14344
MOV MEM,43
ADD MEM, 46] ®
BR ABCD
TABLE:
¥ 1234H
¥ £678H] &)
¥ 9ABCH

1-3-57

UMAS17K ASSEMBLER N E C

(Comments)

Section D is output in 1-4-3-4-4 bit format, similar to the
assemble list mentioned above, by means of the C14344 control
instruction. However, since the DW and DB directives bear no
relation to the C14344 control instruction, the lower part of the
assemble list is output in 4-4-4-4-bit format.

1-3-58

N E C UMAS17K ASSEMBLER

C4444 CODE4-4-4-4 BIT FORM C4444
Symbol Mnemonic Operand Commnet
[Label:] C4444 [;comment]

[Function]

Object column formats which appear in assemble lists after the
incidence of a C4444 control instruction are expressed
hexadecimally as 16-bit object codes of the form 4-bits - 4-bits -
4-bits - 4-bits from the most significant bit.

[Application]

This is used when it is desired to express the object column of an
assemble list hexadecimally without distinguishing between
operation codes and operands.

[Explanation]

(1) If neither the C14344 or the C4444 control instruction is
designated, C14344 will be the effective control instruction.
C4444 designates the object code output format of an assemble
list.

(2) The C4444 control instruction is only effective within the
same module.

[Example]
Source program list

C14344
ADD REG, %3
Mov MEM, GREG
C4444
ADD REG, #3
Mov MEM, REG

1-3-59

UMAS17K ASSEMBLER N E C

3.3.2 Macro development print control instructions

These instructions control whether or not, in developing macro
statements or iteration diréctives when assembling, the details of
the development are to be output to an assemble list. There are
four types of macro development print control instructions, as

given below.

Control Function
instruction
SMAC Outputs an object code only.
NOMAC Outputs neither object codes nor statements.
OMAC Outputs object codes and statements for sec-
tions where object codes are generated.
LMAC Outputs all object codes and statements.

These instructions are effective only when designated with the
NOGEN assemble option. NOGEN is the assemble option for outputting
assemble lists in respect of macro and iteration directives in
accordance with the control instructions listed above.

1-3-60

N E C UMAS17K ASSEMBLER

SMAC SHORT FORM MACRO LISTING SMAC
Symbol Mnemonic Operand Commnet
[Label:] SMAC [;comment])

[Function]
Suppresses assemble list output of all statements in macro and
iteration directive statement development sections.

[Application]
Used when it is desired to suppress printing of macro development
sections, and print out the actual object developed only.

[Explanation]

(1) Object codes only are developed in assemble lists. These are
output side by side in groups of 8 instructions.

(2) The SMAC control instruction is only effective when designated
with the assemble option NOGEN. If this is not designated, the
default value will be the GEN setting, and the SMAC
instruction will be ineffective.

[Example]
Source program list

ABC MACRO
NOP
NOP
NOP
ENDM

SHAC
ABC

1-3-61

UMAS17K ASSEMBLER N E C

NOMAC NO MACRO LISTING NOMAC
Symbol Mnemonic Operand Comment
[Label:] NOMAC [;comment]

[Function]

Suppresses assemble list output of all statements in macro and
iteration directive statement development sections.

[Application]
This is used when it is desired to print out macro names only.

[Explanation]
This differs from the SMAC control instruction in that it does not

print out object codes. The NOMAC control instruction is only
effective when set with the assemble option NOGEN.

[Example]
Source program list

cce MACRO
NOP
NOP
NOP
ENDM

NOMAC
ccc

1-3-62

NEC

UMAS17K ASSEMBLER
OMAC OBJECT ORIENTED MACRO LISTING OMAC
Symbol Mnemonic Operand Comment
(Label:] OMAC [;comment]
[Function]

Outputs to an assemble list, from macro and iteration directive
statement development sections, statements which generate object

codes, but does not output statements which do not.

[Application]
Used when it is desired to print out objects and statements from
sections which develop objects only.

[Explanation]
The OMAC control instruction is only effective when designated
with the NOGEN assemble option.

[Example]
Source program list.

AAA MACRO

BBB SET

OFFH

IF AAA

L]
ELSE

MoY
ENDIF

NOP
ENDN

OKAC
AKA
LMAC
AAA

A, %5H
A, #6H

1-3-63

UMAS17K ASSEMBLER N E C

LMAC LONG FORM MACRO LISTING LMAC
Symbol Mnemonic Operand Commnet
{Label:] LMAC [;comment]

[Function]
This is used to output to a list all statements in macro and
iteration directive statement development sections.

[Application])
Used when it is desired to print out all objects and statements in
macro and iteration directive statements.

[Explanation]

(1) If a list output control instruction (NOLIST, LIST) is present
in a statement in a developed macro, list output control is
effected in accordance with that designation.

(2) The LMAC control instruction is only effective when designated
with the assemble option NOGEN.

(3) The LMAC directive is always effective at the beginning of all
source module assembling operations.

1-3-64

NEC

UMAS17K ASSEMBLER

[Example]

Program source list.

AAA MACRO
A MEM
BBB SET
IF

MoV

ELSE

MOV

ENDIF
NOP

ENDN

LMAC
AAA

0.01H
OFFH
BBB

A, %5H

A, %6H

1-3-65

UMAS17K ASSEMBLER N E C

3.3.3 Source input control instructions

Source input control instructions are used when it is desired to
split files in a single program or source module; that is to say,
when it is desired to split files because they have become too
large, or use programs which have already been completed and
placed in a library. The main source input control instruction is
INCLUDE. When referencing a file, the INCLUDE control instruction
is used to designate the name of that file.

Source program

Drive B
SUB1.ASM
INCLUDE 'B:SUBI.ASM’ .
i EOF
M Drive C
INCLUDE 'C:SUB2.ASN’ SUB2. ASH
END o
EOF

1-3-66

N E C UMAS17K ASSEMBLER

INCLUDE INCLUDE INCLUDE
Symbol Mnemonic Operand Commnet
INCLUDE 'file name' [;comment]

Please refer to the Introduction for file naming restrictions.

[Function]

Used to read out source programs designated by the file name, and

partially process those source programs.

[Application]

Used when it is desired to insert other split files.

[Explanation]

(1) A source module designated by INCLUDE may also contain an

(2)

(3)

(4)

INCLUDE statement. Eight levels of nesting are possible with
INCLUDE. If nine levels or more are set, an N error (INCLUDE
nesting error) occurs and those levels are ignored.

An EOF statement must be placed at the end of the file
designated by an INCLUDE control instruction.

If an extension to the filename is not designated, the
extension ASM will be used.

Since files joined by the INCLUDE control instruction are not
in split modules, symbols in the original source program may
be referenced as is.

1-3-67

UMAS17K ASSEMBLER

NEC

[Example]

Source module A

INCLUDE 'A: MACROFILE.ASK’

END

Source module B

INCLUDE 'A: MACROFILE.ASK’

END

MACROFILE. ASY

MAC1 MACRO Al1,A2

ENDM
MAC2 MACRO B1,B2

ENDM

MAC3 MACRO C1,C2

ENDM

MAC4 MACRO D1,D2
ENDM

EOF

1-3-68

N E C UMAS17K ASSEMBLER

(Comments) .
Only macros used in a number of modules can be put in the one

file. If that file is inserted into modules using the INCLUDE
control instruction, it is both possible and convenient to use a
macro common to a number of source modules without using the
PUBLIC or EXTRN directives. If the PUBLIC and EXTRN directives are
used, it is necessary to declare the macro name used for each

module it is used in.

1-3-69

UMAS17K ASSEMBLER N E C

EOF END OF FILE EOF
Symbol Mnemonic Operand Comment
EOF

[Function)])

This indicates the end of a source file designated by the INCLUDE
control instruction. At this point, assembling moves to the next
statement after the INCLUDE statement.

[Application]
EOF is used when it is desired to end the file referenced in the
INCLUDE control instruction.

[Explanation]

(1) An error will be generated if the EOF control instruction is
not followed by a line feed.

(2) If a statement is entered after the EOF control instruction, a
warning (statement after EOF) will be generated and that
statement will be disregarded.

[Example]
Drive A
Source program SUB1. ASM
INCLUDE "A :SUBI.ASM’ .
i EOF
END

1-3-70

N E C UMAS17K ASSEMBLER

3.3.4 Document generation control instructions

The AS17K's documentation generation functions can be used to
output assemble lists and other documentation. Summaries which are
entered with the documentation generation control instruction can
be extracted and information on symbols, object positions, and
assemble lists used in that program can be output in these
summaries.

This documentation consists of two sections: the document itself
plus the table of contents.

The documentation generation control instructions are SUMMARY and
TAG.

1-3-71

UMAS17K ASSEMBLER N E C

SUMMARY SUMMARY SUMMARY
Symbol Mnemonic Operand Commerft
[Label:] Summary 'Terminal character string' [(;comment]

[,'Title']

Text not including terminal character string

Terminal character string CR/LF

[Function]

A document may be created by outputting the block from the line
after the SUMMARY control instruction to the terminal character
string designated by the first operand in SUMMARY. If a heading is
designated as the second operand, that heading will be inserted as
the table of contents of the document. If an empty character
string is designated as the terminal character string, only the
heading will be registered, and it will not be possible to enter a

character string (text) in the line after the SUMMARY control
instruction.

[Application])

Used for outputting text summaries.

[Explanation])

(1) Carriage returns and line feeds are interchangeable in the
document terminal character string.

(2) There are no limitations on the alphanumeric characters which
may be entered in the character string, but the first 16

characters only (8-bit JIS code character conversion) are
effective.

1-3-72

N E C UMAS17K ASSEMBLER

(3)

(4)

(5)

There are no limitations on the alphanumeric characters which
may be entered in the title, but only the first 255 characters
(8-bit JIS code character conversion) from the beginning are
effective, and any more will be ignored.

The first SUMMARY control instruction to appear in a module
will be interpreted as entering the module summary for that
module. The second such instruction appearing subsequently
will be interpreted as entering a routine summary between that
instruction and the next SUMMARY or END directive.

A line in the summary character string up to the terminal
character string in which the first character is a period will
be interpreted as a command line for the document. The
commands are as given below.

. EJECT..... Inserts a page break
. SPnn...... Indicates that a number of spaces is to be output
before the data list line which is output
continuously and carries the summary. n must be
designated as a 2-digit decimal number. If this
command is omitted, 8 spaces will be output. This
command may be inserted anywhere in a summary.
. LFnn...... Specifies the line spacing in the text. If not
set, the line spacing will be single.
. TITLE 'character string'...... This designates the title
which is printed on each page
of the text of the document.

[Example]

Please refer to Section 3.5 on the documentation generation

functions.

1-3-73

UMAS17K ASSEMBLER N E C

. TAG .

Symbol Mnemonic Operand Comment
;. [character string]

[Function]
The character string which follows the ;. is registered as a TAG.

[Application]

The character string registered may be used as a title for the
lowest level of the programming hierarchy in SIMPLEHOST. It may
also be output as a SUMMARY title in assembler lists.

[Explanation]

(1) The character string registered is the character string from
the character immediately following the ;. to the next
carriage return or line feed.

(2) The maximum number of characters permissible in the character
string is 255 ; if more
than that number is entered, only the first 255 will be
registered.

(3) The TAG instruction may be entered in whichever position is
desired.

[Example]
Please refer to Section 3.5 on the documentation generation
functions.

1-3-74

N E C UMAS17K ASSEMBLER

3.4 Macro Functions

Where the same routine is used a number of times in a program, it
is possible to reduce the number of program steps by creating
generalized subroutines. In cases in which rcutines are a little

different and cannot be made into subroutines, or parameters are
different, macro functions may be used to increase programming
efficiency.

In this section, the use of macro functions is explained in
detail, with examples. For methods of entering macro definition
directives, please refer to Section 3.2.7.

3.4.1 Macro definitions

The macro definition directives MACRO and ENDM are used to define
macros. It is also possible to enter formal parameters when
defining macros. The symbols which are defined within macros are
of two types: local symbols which are effective only within the
macro, and GLOBAL symbols which are effective in routines outside
the macro.

To create a GLOBAL symbol, it is necessary to declare the symbol
concerned globally within the macro using the GLOBAL directive.
Symbols which are not globally declared are treated as local
symbols effective only within the macro concerned. For the GLOBAL
directive, please refer to Section 3.2.8 on symbol definition

within macros.

1-3-75

UMAS17K ASSEMBLER N E C

3.4.2 Macro references

(1) [Entry format]

Symbol Mnemonic Operand Comment
[Label:] Name <Actual parameter list> [;comment]

(2) [Function] ’
Refers to macro bodies defined by MACRO and ENDM statements.

(3) [Explanation]

i)

ii)

iii)

iv)

v)

The name is a MACRO name entered in the symbol column of a
MACRO statement. It must be defined prior to the
reference.
There are four types of formats which may be entered as
actual parameters; these are evaluated as 16-bit data.
o Expressions
o Character constants

(enclosed in gquotation marks).
o Spaces (no entries, only commas).
The replacement of formal parameters by actual parameters
is in accordance with the order of entry and in order from
the left.
However, if the number of actual parameters
exceeds the number of formal parameters, an O error
(operand count error) will be generated.
If the number of actual parameters is less than the number
of formal parameters, an empty character string will be
assigned to the remaining formal parameters, and if a
macro reference occurs, no error will be generated.
However, the empty character string will cause an error to
be generated when the macro is developed.
If spaces, commas, quotation marks, semicolons or tabs and .
so forth are entered in actual parameters, they must be
enclosed in quotation marks as character strings.
It is possible to enter macro reference statements in

macro bodies. Nésting, including the nesting of iteration

1-3-76

N E C UMAS17K ASSEMBLER

directives, built-in macro instructions, macro reference

statements and IF statements, is possible up to a maximum
of 40 levels. If this is exceeded, an N error (nesting
overflow) will be generated, and the excess will not be
assembled.

(4) [Example]
Referring to the previously defined macro (ADMAC):

ADMAC 10H, 204

(Comments)

"ADMAC" is the macro name defined by a macro definition directive,
while "10H, 20H" is the actual parameter required when making a
reference to "ADMAC".

1-3-77

UMAS17K ASSEMBLER N E C

3.4.

3 Macro expansion

Source programs which use macros are assembled in the following

order.

(1)

(2)

(3)

If there is a macro definition, the macro body is stored as is
in the internal assembler memory region (macro register).
Next, when a macro reference is discerned, the corresponding
macro body is retrieved from the symbol table, and loaded into
the macro name position.

Developed programs are assembled. However, if double
semicolons have been entered in the macro body, everything
after those double semicolons to the end of that line will be
regarded as a comment within the macro definition, and will
not be developed at the time of referencing the macro.

[Example]

ADMAC MACRO Al,A2,B1,B2
ADD A2,B2
@
ADDC Al,Bl1
ENDM
ADMAC RO,R1, #0H, #1H @

(Comments)

(1)

(2)

The macro with the name "ADMAC" is to be defined. Al, A2, B1,
B2 are formal parameters.

The macro "ADMAC" is to be referred to. RO, R1, #O0H; #01H are
actual parameters corresponding to the formal parameters, A1,
A2, B1 and B2. In this example, RO and R1 must have been
predefined as MEM type symbols.

The result of referring to ADMAC is developed in the manner
shown below.

ADD RI1,%1H
ADDC RO, #0H

1-3-78

N E C UMAS17K ASSEMBLER

3.4.4 Examples of the use of macros

Example 1:

An example of a macro definition.

PMAC MACRO P1,P2 @
L1 DAT oCH ;@
ow P
oW P2
ENDM
LI DAT 04H ;7 ®
PMAC 3000H, L1 HO)

(Comments)

(1)

(2)

(3)

(4)

(5)

P1 and P2 are formal parameters. A reference is being made to
a DW operand column in a macro.

The symbol L1 is being defined in the macro. Since this symbol
is handled as a local symbol, it will only be effective in
this macro.

The symbol L1 is being defined in the main routine. The symbol
L1 in the macro is a local symbol and a second definition
cannot be made.

Here, there is an instruction referring to a macro called
PMAC. 3000H and L1 are actual parameters corresponding to P1
and P2. L1 is treated as a symbol defined in a macro. If it is
desired to send parameter L as a character constant, '‘'‘'L'"'
is entered in the actual parameter entry operand.

The result of the macro reference is developed as shown below.

L1 DAT OCH
DW 3000H
DW i

1-3-79

UMAS17K ASSEMBLER N E C

Example 2:

An example of a macro in which formal parameters are used.
Formal parameters may be entered in any of the symbol, mnemonic,
.operand or comment columns.

ABC MACRO P1,P2,P3,P4,P5

P1: p2 P3,@&p4 +PS
ENDN

L]
ABC LOOP, MOV,RO, MEM1, 'macro is GREAT'

(Comments)
(1) A actual parameter is being defined when a macro reference is
occurring.

(2) The example given above is developed as shown below.

LOOP: MOV RO, GKEM1 1Macro is GREAT

Example 3:

An example in which the number of actual parameters is less than
the number of formal parameters.

No evaluation of the operand occurs and an error is generated if a
space or a tab code is entered as a actual parameter in the macro

formal parameter associated with that operand, or if nothing is
entered.

MAC1 MACRO Pl 1
IF Pl
ADD 104, 51
ENDIF
ENDM
MAC1

1-3-80

N E C UMAS17K ASSEMBLER

(Comments)

Since no actual parameter is entered in the macro reference
statement, a NULL string is returned as the parameter, and an O
error (operand count error) is generated in the IF statement.

Example 4:
First example of using a global symbol.

PERIOD MACRO P1,P2

GLOBAL TIMEL, TIME2 HEN)
TIMEL SET (10000/P1) AND OFFH
TIME2 SET (10000/P2) AND OFFH

ENDM
PER1OD. 455,100 7 @
PERI1OD 640, 2400 T ®

(Comments)

(1) TIME 1 and TIME 2 are defined as global symbols. In this
example, P1 and P2 are formal parameters.

(2) 455, 1000 is defined as a actual parameter.

(3) 640, 2400 is defined as a actual parameter.

(4) The macro reference is developed as set out below.

® TIME1l SET 10000/455 AND OFFH
TIME2 SET 10000/100 AND OFFH
©) TIME]l SET 10000/840 AND OFFH
TIME2 SET 10000/2400 AND OFFH

1-3-81

UMAS17K ASSEMBLER

NEC

Symbols defined using the SET directive may be defined twice or
more. If symbols defined with DAT, MEM, FLG or LAB directives in
macros are globally declared, and referenced twice or more in a

macro, an S error (symbol multi defined) will be generated.

Example 5:

Second example of using a global symbol

STMAC

SYMA

MACRO
GLOBAL
DAT
D¥
ENDN
STMAC

DW
MOV

SYMA
OH
SYMA

SYMA

MEMOD, #SYMA

(Comments)

A symbol defined as a global symbol in a macro will continue to

have that value even though macro development is complete.

1-3-82

N E C UMAS17K ASSEMBLER

Example 6:

Third example of using a global symbol

BICMAC MACRO
GLOBAL FLGA
FLGA FLG 0.10H.1
FLGB FLG 0.10H.2
SET1 FLGA
CLR1 FLGB
ENDM
BICMAC
.
SKT1 FLGA
SKF1 FLGB

(Comments)

It is possible to refer to the symbol FLGA defined as a global
symbol in a macro, but it is necessary to redefine the local
symbol FLGB if it is to be used outside the macro.

Example 7:

Using symbols defined outside macros.

DATI DAT O
MEMO! MEX O0.OlH
SMMAC MACRO
DATI DAT 1
MOY MEMOI, #DATI
ENDM

MOY MEMO1,%DAT1

1-3-83

UMAS17K ASSEMBLER N E C

(Comment)
A symbol defined outside a macro may be used without change inside

a macro. Further, as is the case with DAT1 in the example above,
redefinition is possible within the macro. However, the value
defined for the macro will only be effective within the macro, and
the externally defined value will be the effective one outside the
macro.

Example 8:

An example in which the limitations of global declarations are
seen--even though the symbol was defined with a SET directive--
with the result that the original value is the effective one
outside the macro.

Assemble list:

SYMB SET 0

SYMC SET 1
Macro development section

PMAC

GLOBAL SYMB
SYMB SET 2
SYMC SET 3

MoV M, *SYNB

MoV M, *SYMC

Mov M1,4SYNB
MoV M1, 8SYMC

If SYMB and SYMC, which have been redefined within the macro, are
referred to a second time outside the macro, the value 2 redefined
for SYMB which has been globally declared is effective, but with
SYMC, the original value 1 is the effective one.

1-3-84

N E C UMAS17K ASSEMBLER

3.5 Document Generation Functions

It is possible to generate lists with the AS17K's documentation
generation control instructions. These lists are output separately
from assemble lists, and are of three varieties: program summaries

which summarize whole programs, module summaries which summarize
each module, and routine summaries which deal with these modules
in more detail and summarize routines. A table of contents is
automatically generated for each of these types of lists.

Program

Module

Module

Routine

[Routine

Module

Module

1-3-85

UMAS17K ASSEMBLER N E C

3.5.1 Program summaries

Program summaries may be obtained by designating the assemble
option /SUMMARY. The SUMMARY option may be used to designate file
names of the following formats to indicate where the titles and
texts of these program summaries are stored.

[Entry format]

/SUM[MARY] = 'title', filename
All text in the file designated by the second argument of the
option becomes the program summary text. The file designated by
the SUMMARY option contains the text which summarizes the whole

program.

[Example]
The SUMMARY option is designated as below.

/SUM= '0.0 ABSTRACT', PROG.SUM

In addition, the file PROG.SUM can be set to be contain the
following data:

This program is ...

The use of this SUMMARY option permits text to be output in a list
of the following sort:

0.0 ABSTRACT

This program is ...

[Points to be noted]

As is the case with the SUMMARY control instruction, ".EJECT" is
used to create a page break. All commands which can be used with
the SUMMARY control instruction can also be used here.

1-3-86

N E C UMAS17K ASSEMBLER

3.5.2 Module summaries

A module summary is designated by a SUMMARY control instruction
which appears at the very beginning of each module. In the text of
the module summary, the title and summary designated by the
SUMMARY control instruction, plus a list of symbols declared
publicly or externally in that module, plus the address range for
that module, is output.

3.5.3 Routine summaries

Routine summaries are designated with the SUMMARY control
instruction, and may be entered twice or more in each module. The
"routine" referred to here indicates a statement which is entered
between two or more SUMMARY control instructions or the next
instruction with a title, or an END directive. Routine summaries
contain the following information in addition to the title
designated by the SUMMARY control instruction-and the summary
itself.

(1) ENTRANCES
A list will be output in alphabetical order of references from
outside the routine to labels defined in the routine.

(2) MEMORIES CHANGED
MEM type symbols which carry out write operations in the
routine are output alphabetical order.
The symbols referred to here are MEM symbols entered in the
first operand of a transfer or operation instruction. If the
symbol is operated on in the operand, the symbol is output
with parentheses. Further, if a "MOV @R, XX" instruction is
executed in a routine, the "@R" is treated as a stbol and
output in this column.

(3) MEMORIES REFERRED
MEM type symbols which carry out read operations in the
routine are output in alphabetical order.
The symbols referred to here are MEM symbols entered in the
first operand of a transfer or operation instruction. If the
symbol is operated on in the operand, the symbol is output
with parentheses. Further, if a "MOV @R, XX" instruction is
executed in a routine, the "@R" is treated as a symbol and

output in this column.
1-3-87

UMAS17K ASSEMBLER N E C

(4)

(5)

(6)

(7)

(8)

(9)

MEMORIES MANIPULATED

MEM type symbols entered using types and amendment functions
in places where, in that routine, DAT types should be entered,
are output in alphabetical order.

FLAGS CHANGED

FLG type symbols entered in the operands of SETn/CLRn/NOTn
built-in macro directives in the routine are output in
alphabetical order.

FLAGS REFERRED

FLG type symbols entered in operands of SKTn/SKFn built-in
macro directives in the routine are output in alphabetical
order. If operations occur in the operand, parentheses are
attached when outputting.

DATA REFERRED

All DAT type symbols which appear in a routine are output in
alphabetical order. Parentheses are not given to the DAT type
symbol if there is an oeration.

TIBRANCH TO

This outputs the contents of the operand column of a branch
instruction used within the routine, and also the contents of
comments in that line. However, this is limited to instruc-
tions which branch outside the routine. In the case of the
direct branch instruction "BR @AR", @AR is regarded as a
symbol and is processed in the same way. If an operation takes
place in the operand, parentheses are attached when output.
SUBROUTINES CALLED

This outpups, in alphabetical order, symbols with label
attributes which are entered in a CALL instruction operand in
that routine. If an operation has taken place, parentheses are
attached when output. If there is a direct subroutine call
instruction "CALL @AR", the @AR is treated as an operand and
processed similarly.

(10) LABEL MANIPULATED

LAB type symbols which have been entered using the .DL. type
conversion function in an operand in which a DAT type symbol
should be entered are output in alphabetical order.

Parentheses are not output even though an operation may have
taken place.

1-3-88

N E C UMAS17K ASSEMBLER

(11)

If this column list makes use of a direct branch instruction,
a direct subroutine call or a look up table (MOVT @AR)
instruction, an offset' object results.

SYSTEM CALL ‘

This item is output only with assemblers for products which
are provided with a SYSCAL instruction. This column outputs
the SYSCAL instruction operand column entries as they are.
(For example, even an operand containing numerals only will
be output).

1-3-89

UMAS17K ASSEMBLER N E C

3.5.4 Examples

Program summaries are designated in the same way as the examples
on the previous pages for the assemble option SUMMARY. On this
occasion, the SUMMARY control instruction which appears at the

very beginning of a module is entered in the following manner.

SUMMARY °%’,°'1.0 INITIALIZE MODULE’

This module initializes all the variables

%

A document list is output as follows:

0.0 ABSTRACT

@

This program is ‘e
1.0 INITIALIZE MODULE HE M
@

This module initializes all - @"
PUBLIC(DAT):AA,AB -+, XYZ T

©)]
PUBLIC(LAB):AYZ,BBC, - -
EXTRN (LAB):EFG,--280 .- @
ADDR. RANGE :0COOH-0128H HEG)

1-3-90

N E C UMAS17K ASSEMBLER

(Comments)

@

© ® © ©

3.5.

The SUMMARY option is used to designate the program title and
summary.

The SUMMARY instruction is used to designate the module title
and summary.

The different symbol types publicly declared in the module are
output alphabetically.

Symbol types which are the subject of EXTRN declarations in
that module are output alphabetically.

The program memory address range occupied by that module is
output as 4 hexadecimal digits.

If it is desired to omit section @), the second operand in the
SUMMARY control instruction is omitted. In this case, the
table of contents page described below will not be generated.
If it is not desired to output @, a NULL string (' ') is
designated as the first operand.

5 The table of contents generation function

Tables of contents may be automatically added to lists.

The

table of contents gives the page numbers of lists for each

title. This documentation generation function does not have the

capability of stopping automatically a table of contents. Thus,
when it is desired to end the table of contents, a space should be

entered at the point in each SUMMARY control instruction statement

where each title is designated.

[Example]

Outputting the example given in 3.5.4

TABLE OF CONTENTS

PAGE

0.0 ABSTRAQT X X X
1.0 INITIALIZE MODULE =~ eecevercemeercnan XXX
1.1 TIMER ‘lNITlALlZE ------------ XXX
1.2 PORT INITIALIZE =~ ceeeeeeseeeeens XXX

* This line spacing is designated by the ".LF'" command.

1-3-91

UMAS17K ASSEMBLER N E C

[Output example]
Program source list

SAMMARY’¥',' 1.1 TIMER INITIALIZE’

THIS ROUTINE INITIALIZES MEMORIES ASSIGNED FOR CLOCK.

BEFORE THE INITIALIZATION,TIME SYSTEN 1S CHECKED ;12-HOUR OR 24-HOURS.
IF 24-HOUR-SYSTEM,CLOCK IS INITIALIZED TO 0:00. AND IF 12-HOUR-SYSTEM.
INITIALIZED TO 12:00 AM.

¥
TIMER: ENTRANCE OF THIS ROUTINE
MOV MINL, %0 B
MOV MINH, 30 ’
SKT1 F24HR i IF 12-HOUR-SYSTEM,
BR HRI2 THEN GOTO 12-HOUR PROCESS
MOV HRL, %0 H
MOV HRH,%BLANK ;BLANK CODE IS SET TO THE TEN'S DIGIT OF HOUR
BR INITPORT END OF 24-HOUR-SYSTEM INITIALIZE.
HR12:
MOV HRL, %2)
MOV HRH, 21 '
SETi AWFLG SPECIFY AM
SUMMARY' ¥’
NOTE:THIS ROUTINE DOES NOT INITIALIZE MEMORIES FOR INTERVAL TIMER.
¥

. JEND OF 12-HOUR-SYSTEM INITIALIZE.
SUMMARY'¥',” 1.2 PORT INITIALIZE'
ALL THE PORTS ARE INITIALIZED TO LO¥.
¥
INITPORT:

1-3-92

N E C UMAS17K ASSEMBLER

Document list

1.1 TIMER INITIALIZE

THIS ROUTINE INITIALIZES MEMORIES ASSIGNED FOR CLOCK.

BEFORE THE INITIALIZATION, TIME SYSTEM IS CHECKED ;12-HOUR OR 24-HOURS.
IF 24-HOUR-SYSTEM,CLOCK 1S INITIALIZED TO 0:00. AND IF 12-HOUR-SYSTENM,
INITIALIZED TO 12:00 AN.

NOTE:THIS ROUTINE DOES NOT INITIALIZE MEMORIES FOR INTERVAL TIMER.

ENTRANCES ‘TIMER

MEMORIES CHANGED “HRH,HRL, MINH, MINL
MEMORIES REFERRED. -

MEMORIES MANIPULATED :-

FLAGS CHANGED TAM

FLAGS REFERRED {F24HR

DATA REFERRED :BLANK

BRANCH TO (INITPORT ;END OF 24-HOUR-SYSTEM INITIALIZE.

SUBROUTINES CALLED -
LABELS MANIPULATED -

1.2 PORT INITIALIZE
ALL THE PORTS ARE INITIALIZED TO LO¥.

1-3-93

N E C UMAS17K ASSEMBLER

CHAPTER 4 BUILT-IN MACRO DIRECTIVES

4.1 An Overview of the Built-in Macro directives

In programs, macros which are defined in advance by the assembler
are known as built-in macro instructions. The differences between
a built-in macro instruction and a macro instruction defined by
the user are set out below.

(1) Built-in macro instruction development at assemble time is
much faster than the time required for user-defined macro
instructions.

(2) If built-in macro instructions are developed when generating
assemble lists, the statement at the point at which an object
is generated is listed. However, if an SMAC, OMAC or NOMAC
declaration has been made ahead of the built-in macro
instruction, output is in accordance with that declaration.

(3) Built-in macro instructions are optimized to create objects
with the minimum number of steps.

There are 5 types of macro instructions as listed below.

SKTn, SKFn ... Flag judgment

SETn, CLRn ... Flag setting
NOTn ... Flag inversion
INITFLG ... Initialize flags
BANKn ... Set banks

1-441

UMAS17K ASSEMBLER N E C

4.2 Built-in Macro Instructions

SKTn, SKFn
SETn, CLRn
NOTn
INITFLG
BANKn

The following points should be noted when making use of built-in
macro instructions. ‘

When an instruction which has a skip function is entered
immediately before a built-in macro instruction, the instruction
shown below is automatically entered in the development format so
that processing does not lead to a program logic contradiction.

BR $+2
BR $+m+1 m: The number of steps in the statement developed
by the built-in macro instruction.

However, if amending the source program, as is shown in the
example below, it is possible to shorten the program by one step.
Thus, if a BR instruction has been generated, a warning will
appear in the assemble list (may be shortened BR), to indicate the
potential for reducing the number of steps.

[Example]

In the following program, SET2, the instruction for setting the
flags AFLG and BFLG is skipped, so that when the program is
amended as shown below, there is no need for a BR instruction, and
the length of the program can be reduced a step.

SKE M, %1 Development i SKE M, %l _ :
SET2 AFLG,BFLG: ----- BR $+2] Generated
. BR $+5

PEEX ¥R, .MF.AFLG SHR 4
OR WR,%.DF.AFLG AND OFH
POKE .MF.AFLG SHR 4,¥R
OR .MF.BFLG SHR 4,%.DF.BFLG AND OFH

1-4-2

N E C UMAS17K ASSEMBLER

SKNE M. #1) . SKNE X, %1
BR NEXT Development { BR NEXT
SET2 AFLG.BFLG ----- PEEKX WR,.MF.AFLG SHR 4

NEXT:. OR WR.#.DF.AFLG AND OFH
s POKE .MF.AFLG SHR 4,¥R
OR .MF.BFLG SHR 4,%.DF.BFLG AND OFH
NEXT:

1-4-3

NEC

UMAS17K ASSEMBLER
SKTn SKIP IF n FLAGS ARE TRUE SKTn
SKFn SKIP IF n FLAGS ARE FALSE SKFn
Symbol Mnemonic Operand Comment
[label:] SKT1 <symbol (FLG type)> [;comment]
[label:] SKT2 <symbol(FLG type)>,<symbol(FLG type)> [;comment]
[label:] SKT3 <symbol(FLG type)>,<symbol(FLG type)>,
<symbol(FLG type)> [;comment]
[label:] SKT4 <symbol (FLG type)>, <symbol(FLG type)?>,
<symbol (FLG type)>,<symbdl(FLG type)> [;comment]
[label:] SKF1 ¢<symbol (FLG type)>,
[label:] SKF2 <symbol (FLG type)>,<symbol(FLG type)> [;comment]
[label:] SKF3 <symbol(FLG type)>,<symbol(FLG type)>,
<symbol(FLG type)> [;comment]
[label:] SKF4 <symbol(FLG type)>,<symbol(FLG type)>,
<symbol (FLG type)>,<symbol (FLG type)> [;comment]
[Function]
SKTn: If all flags designated in the operand column are set to 1,

skips the next instruction.
SKFn: If all flags designated in the operand column are set to 0,

skips the next instruction.

[Application]

This is used to skip instructions, depending on the flag status.
[Explanation)])

(1) If a block other than <symbol(FLG type)> is entered in the
operand column, an O error (illegal operand type) will be
generated.

(2) If a mixture of flags from different bank data memories are
entered in the operand column, a B error (BANK unmatch) is

generated.

1-4-4

N E C UMAS17K ASSEMBLER

(3)

(4)

(5)

Flags defined in data memory and in registers of files may
both be entered in the operand column. The section in the
register file where the data memory and addresses are stacked
(40H~ 7FH) is processed as data memory.

A maximum of 40 levels of nesting is possible, including the
nesting of iteration directives, IF statements, built-in macro
instructions, and macro reference statements.

If the operand number and the value of n in SKTn and SKFn are
different, an O error (operand count error) will be generated.

[Example]

A_flag MEM 0.10H 7

Al_flag FLG .FM.A_flag SHL 4+]
A2_flag FLG .FM.A_flag SHL 4+2-
a3_flag FLG .FM.A_flag SHL 4+4)

p.flag MEM 0.40H

Di_flag FLG .FM.D_flag SHL 4+]

p2.flag FLG .FM.D_flag SHL 4+2

D3-flag FLG .FM.D-flag SHL 4+4 -
SKT2 a1_flag, D3_flag)
BR XY

SKF3 A2_flag, Al_flag, A3_flag 1 ®
BR YZ

(Comments)

The above is an example showing the use of SKTn and SKFn.

At @ , the flags to be used at @ and) are defined.

At @, the flags_Al1 and_D3 are set, "BR XY" is skipped and the
next instruction is executed.

At @ , when the flags_A2,_A1 and_A3 are cleared, "BR YZ" is
skipped and the next instruction is executed.

1-4-5

NEC

UMAS17K ASSEMBLER

SETn SET nFLAGS SETn

CLRn CLEAR nFLAGS CLRn
Symbol Mnemonic Operand Comment
[label:] SET1 <symbol (FLG type)> [;comment]
[label:] SET2 <symbol(FLG type)?>,<symbol(FLG type)> [;comment]
[label:] SET3 <symbol (FLG type)>,<symbol(FLG type)>,

<symbol (FLG type)> [;comment]

[label:] SET4 <symbol (FLG type)>,<symbol(FLG type)>,

<symbol (FLG

type)>, <symbol (FLG

type)>

[;comment]

[label:] CLR1 <symbol (FLG type)> [; comment]
[label:] CLR2 <symbol(FLG type)>,<symbol(FLG type)> [;comment]
[label:] CLR3 <symbol (FLG type)>, <symbol(FLG type)>,

<symbol (FLG type)> [;comment]
[label:] CLR4 <symbol (FLG type)>, <symbol(FLG type)>,

<symbol (FLG type)>,<symbol(FLG type)> [;comment)
[Function]
SETn: Sets all flags designated in the operand column to 1.

CLRn:

[Application]

Used to operate flags.

[Explanation]
(1) If a block other than <symbol(FLG type)> is entered in the
operand column, an O error (illegal operand type) will be

generated.

(2)

entered in the operand column, a B error (BANK unmatch)

generated.

(3)

Sets all flags designated in the operand column to 0.

If a mixture of flags from different bank data memories are

is

Flags defined in data memory and in registers of files may

both be entered in the operand column. The section in the

register file where the data memory and addresses are stacked

(40H~ 7FH) is processed as data memory.

NEC

UMAS17K ASSEMBLER

(4) A maximum of 40 levels of nesting is possible, .including the
nesting of iteration directives, IF statements, built-in macro

instructions, and macro reference statements.

(5) If the operand number and the value of n in SETn and CLRn are

different, an O error (operand count error) will be generated.

[Example]

A_flag
Al_flag
A2_flag
A3_flag

D_flag
Di_flag

D3-flag

D2_flag.

MEN
FLG
FLG
FLG
MEN
FLG

FLG
FLG

SET2

CLR3

0. 10H —
A_flag.0
A_flag.1
A-flag.2

0.40H

D.flag.0

D_flag.1

D.flag.2 j—

Al_flag, D3.flag)

A2 flag, Al_flag, A3_flag @

(Comments)

The above is an example of the use of the built-in macro
directives SET2 and CLR3.
At @D , the flags to be used at @ and) are defined.
At @, flags.Al and.D3 are set to 1.

At @, flags.A2,.A1 and_A3 are reset to 0.

1-4-7

UMAS17K ASSEMBLER N E C

NOThn NOT nFLAGS NOTn

Symbol Mnemonic Operand Comment
[label:] NOT1 <symbol (FLG type)>,
[label:] NOT2 <symbol(FLG type)>,<symbol (FLG type)> [;comment]
[label:] NOT3 <symbol (FLG type)>,<symbol(FLG type)>,

<symbol (FLG type)> [;comment]
[label:] NOT4 <symbol (FLG type)>, <symbol(FLG type)>,

¢<symbol (FLG type)>,<symbol(FLG type)> [;comment]

[Function]
Inverts all flags designated in the operand column.

[Application]
Used to invert flags.

[Explanation]

(1) If a block other than <symbol(FLG type)> is entered in the
operand column, an O error (illegal operand type) will be
generated.

(2) If a mixture of flags from different bank data memories are
entered in the operand column, a B error (BANK unmatched) is
generated.

(3) Flags defined in data memory and in registers of files may
both be entered in the operand column. The section in the
register file where the data memory and addresses are stacked
(40H~7FH) is processed as data memory.

(4) A maximum of 40 levels of nesting is possible, including the
nesting of iteration directives, IF statements, built-in macro
instructions, and macro reference statements.

(5) If the operand number and the value of n in NOTn are

different, an O error (operand count error) will be generated.

1-4-8

N E C UMAS17K ASSEMBLER

[Example]

A_flag MEM 0.10H B
Al_flag FLG A_.flag.0
A2_flag FLG A_flag.1
A3_flag FLG A_flag.2

D_flag MEM 0.40H
pi_flag FLG D.flag.0
p2-flag FLG D.flag.1
p3-flag FLG D-.flag.2 B

NOT1 Al_flag H

NOT3 A3_flag, D2_flag, Al_flag : @

(Comments)

The above example shows the use of the built-in macro directives
NOT1 and NOT3.

at (D, the fla e use

oe +o
AT ne +agsS o

o

A a+r M amA M -
d at @ and @ ar
At @ , the flag-Al is inverted.

At @ , the flags_A3,_D2 and_Al are inverted.

1-4-9

UMAS17K ASSEMBLER N E C

INITFLG INITIALIZE 4 FLAGS INITFLG
Symbol Mnemonic Operand Comment
{label:]) INITFLG = = = -=-=-=------ [;comment]

[NOT]<symbol(FLG type)>, [NOT]<symbol(FLG type)>,
[NOT] <symbol (FLG type)>, [NOT]<symbol(FLG type)>

[Function]
Initializes the four flags designated in the operand column to be
set as 1 or reset as 0.

[Application]
Used to initialize the flags.

[Explanation]

(1) It is necessary to enter four individual symbols (FLG type) in
the operand column. If three or fewer or five or more FLG type
symbols are entered, an 0 error (operand count error):-will be
generated. To set three or fewer flags, use the CLR and SET
built-in macro instructions. To set five or more flags, use
the INTFLG, CLR and SET built-in macro instructions together.

(2) If "NOT" is entered before the symbol (FLG type) entered in
the operand column, that flag will be reset to 0; if, "NOT" is
not used, that flag will be set to 1.

(3) If the memory addresses for the four flags are the same, they
‘may be developed by a MOV instruction. In other cases, they
will be developed by multiple step AND and OR instructions.

(4) If a flag with a different bank is set in the operand column,
a B error (BANK unmatch) will be generated.

1-4-10

N E C UMAS17K ASSEMBLER

[Example]

FLAGIO FLG 0.10H.0
FLAGI1 FLG 0.10H.1
FLAGI2 FLG 0.10H.2 @
FLAGI3 FLG 0.10H.3
FLAG20 FLG 0.20H.0
FLAG21 FLG 0.20H.1

INITFLG FLAGI3,NOT- FLAG11,FLAG10,FLAGI2 ; @

INITFLG ~ FLAG12,FLAGi3,FLAG20,NOT FLAG21 ; ®

(Comments)
The above example illustrates the use of the INITFLG directive.

at @ , the (FLG type) symbol to be used at @ and @ is set.
At @ , the flags at the same memory address are initialized.
at @, a flag with a different memory address is initialized.

1-4-11

UMAS17K ASSEMBLER N E C

BANKn BANKn BANKn
Symbol Mnemonic Operand Comment
[label:] BANKn [; comment]

(0 <n <15, nis a decimal integer)

[Function]
Sets the bank value in the bank register (address 79H).

[Application]
This is used when it is desired to set or alter the bank register
value.

[Explanation]

(1) Por n, a decimal integer between 0 and 15 inclusive should be
entered.

(2) Banks may differ according to the product being used; if an
attempt is made to designate a bank which cannot be used, a B
error (invalid bank number) will be generated. Information on
the memory size of each product is provided in the device
file.

(3) The BANK built-in macro instruction is developed as follows:
BANKn — MOV BANK, #n ; the BANK is at address 79H.

(4) If the bank built-in macro instruction is used in situations
which permit the use of index registers, the bank register
address may be modified depending on the contents of the index
register. Please make sure that the index register is
suppressed before using the BANK instruction.

1-4-12

N E C UMAS17K ASSEMBLER

[Example 1)

MOY IXH, 00008

MOV XM, 200008]Cx‘)
MOV IXL,%00108B

SET1 IXE ;@
BANK! H)

(Comments)

The above is an example of the use of the BANK built-in macro
instruction where bank switching is not possible.

At D, the index register is set.

At @ , the index register is made available.

At() ,» 1 may be set at address 7DH without setting the bank
register (address 79H) 1 may be set at address 7DH.

[Example 2]

Al MEM 1.10H](D
A2 MEN 1.11H
BANK1 He)
MOV AL,%1 1@
HOV A2, %52 .

(Comments)

The above example illustrates the use of the BANK built-in macro
instruction.

At @O, the memory address assigned to bank 1 is set. When using
the memory assigned to bank 1, the bank register value must be set
to 1, as at @ . From @ , the bank register value is 1.

1-4-13

PART II OPERATIONS

N E C UMAS17K ASSEMBLER

CHAPTER 1 AN OUTLINE OF THE PRODUCT

1.1 Details of the Product

| Program name | Filename | Type of file
[LAssembler AS17K.EXE | Command file

The command file is the first file read to memory when the program
is started up.

1.2 System Configuration
This section describes the operating environment required by the
AS17K.

(1) Host machine
Refer to the Introduction for details of the personal
computers which can be used.
(2) Operating system
PC-DOS (version 3.1)
(3) User memory size
512 K-bytes or more
(4) Files required for starting up the AS17K

® device file (UPD17XXX.DEV)
A file which stores instructions and mask options
particular to individual products in the series which will
be used in software development. Device files are
purchased optionally for each product.
source file (XXX.ASM)
The file which is assembled.
® sequence file (XXX.SEQ)
A file which stores data for the designation of device
filenames, assemble options, source filenames and so forth
"when the assembler starts up. Sequence files should be

generated in advance if assembling multiple source module
files.

@ Ms-DOS environment setting file (CONFIG.SYS)
Setting values: Files = 15 (may be 15 to 20)

Buffers = 10 (may be 10 or more)

1-5-1

N E C UMAS17K ASSEMBLER

CHAPTER 2 BEFORE EXECUTING

2.1 Making Back-up Files

Before using the AS17K in actual assembly operations, the contents
of all original disks should be copied to working disks in case
the disks themselves or their contents are damaged. Original
system disks should be carefully stored.

Order of generating back-up files:

(1) Boot up MS-DOS

(2) Insert MS-DOS system disk in drive A, and a new disk in drive
B.

(3) Use the FORMAT command to format the disk in drive B, and copy
the system.

A>FORMAT B:/S }
A>

(4) Insert the AS17K system disk in drive A. Using the COPY
command, transfer AS17K. EXE in drive A, and the device file
D17000.DEV* and with the sample program to drive B.

ASCOPY Aix.x Bi/Y |}
A>

(5) Next, transfer the drive A sample program to drive B. Before
this is done, a subdirectory "¥SAMPLE" should be generated in
a drive B file.

A>HD B:\SAMPLE

A>COPY A:\SAMPLE\r.x B:\SAMPLE/V}
A>

1-6-1

UMAS17K ASSEMBLER N E C

(6) By this point, everything in drive A will have been
transferred to drive B. ‘

A>DIR B:/¥
AS1TK.EXE D17000.DEY <SAMPLE>
A>DIR B:\SAMPLE

MODULE1. ASH

KODULE2. ASK

KODULE3. ASK

SAMPLE. SEQ
A>

Users should acquire separately a device file for the device
which they are actually using. That device file (D17XXX.DEV)
should be copied in the same way as is described above.
D17XXX.0PT should also be copied at the same time for any
device which requires the setting of mask options.

FVSample programs are not currently supported. 1

1-6-2

N E C UMAS17K ASSEMBLER

2.2 Introduction to the Sample Program
Insert an MS-DOS system disk in drive A, and ‘a disk containing a
back-up file made up into drive B. Boot up MS-DOS.

A>DIR B:/Wi

AS17K.EXE D17000.DEY <SAMPLE>

In this section, the following files are utilized as source files
for the sample.

A>DIR B:\SAMPLE ¢

MODULE). ASH
KODULE2: ASH
MODULES. ASM
SAMPLE.SEQ

AS17K.EXE is the assembler program itself.
UPD17000.DEV is the device file for the sample program.
Please do not use UPD17000.DEV for actual assembly operations.

UMAS17K ASSEMBLER N E C

2.3 Procedures for Assembling the Sample Program

rﬁ The sample program is not currently supported. l

Two examples of input when booting up the assembler are given
below:

(Example 1) Method of starting up the assembler itself

B>AS17K }
UPD17000 SERIES ASSEMBLER V1.0

(Example 2) Designating sequence files when booting up. the
assembler

B>AS17K \SAMPLE\SAMPLE.SEQ ¢

For the details of sequence files, please refer to the entry
formats in Part 2 Section 3.2 on sequence files.

1-6-4

N E C UMAS17K ASSEMBLER

CHAPTER 3 SEQUENCE FILES

3.1 An Outline

When booting up the assembler and carrying out assembly processes,
it is first necessary to designate the device files, source module
files and assemble options* which are the subject of assembly
processes. These are generically referred to as the assemble
conditions. (There are two ways of designating assemble
conditions: one by means of input from the monitor when booting up
the assembler and another by designating the condition from a
sequence file.) This section will deal with sequence files.

If the designation from sequence file method is used, it is
possible to desighate multiple assembly conditions by invoking the
one sequence file name. Further, during debugging, it is easy to
delete or add in source module files simply by amending entries in
the sequence file. As mentioned above, the use of sequence files
can lead to more efficient debugging operations.

Note

Section 4.5 on assemble options.

1-71

UMAS17K ASSEMBLER N E C

3.2 Sequence File Entry Formats

Entries are made in sequence files by using an editor or the COPY
command. The extension of a sequence filename must be .SEQ".

3.2.1 Total entry formats

[;comment]

device file name {;comment]; (@
/option[/option/option/.../.../.../] [;comment]); @
source file name [/option/.../.../...] [; comment]

. . . ©)

source file name [/option/.../.../...] [; comment]

[Explanation]

(1) At (@ the device filename is designated.

(2) At CD the assemble option is designated. One item only of the
assemble option may be designated between the two slashes. If
designating multiple assemble options, enter them one after
the other. If the designation of an assemble option occupies
two lines or more, enter the slash at the beginning of the
second and subsequent lines.

The assemble option entered at (@ is effective in the
assembly of all source files.

(3) At @ the source module filenames plus the assemble options
for each source file are designated. The entry format for the
assemble option is the same as at (2 above. If an assemble
option for a source file entered at @) is of the same type as
an assemble option in respect of all source files entered at
® that option has priority.

(4) When entering comments in a sequence file, semicolons should
be used similarly to they are used in source programs.

Comments may be entered in any position in a file.

1-7-2

N E C UMAS17K ASSEMBLER

3.2.2 Device filename entry formats

[;comment]

device file name [;comment]

[Function]

Designates the product device files which are subject to

assembling.

[Explanation]

@

@

©)

The device filename should be entered at the beginning of the
sequence file. Note that a comment statement may be entered in
the line preceding the line containing the device filename.
Make sure that .DEV is entered as the extension. If the
extension is omitted, .DEV will be assumed automatically when
assembling takes place. If an extension other than .DEV is
entered, an error will be generated and

assembling will halt.

Device filenames may be entered with an indication of the
directory in which that device file is to be found.

[Example]

Aﬁ\UED]7ﬂ00\l700].Qﬁl

Floppy disk Directory
drive name

Device file name

1-7-3

UMAS17K ASSEMBLER N E C

3.2.3 Assemble option entry formats

[/option])[/option][/.....]1[/option]
[/option](/.....]l[/option][;comment]

[Function]

Designates assemble options.

[Explanation]

() Assemble options are designated by entering them in the line
after the line containing the device filename.

@ Assemble option entries should start with a slash.

® If multiple assemble options are designated, each option
should be separated out with slashes. If a space or tab cocde
is inserted between options, an error (invalid option) will be
generated and assembling will halt.

C) ﬁntries of two lines or more may be used for designating
assemble options. If this is done, a carriage return or line
feed should be inserted at the end of the line, and a slash
entered at the beginning of the next line.

C) If conflicting assemble options are designated, the one

entered later will be the effective one.

It is possible to omit the designation of an assemble option.

Please refer to section 4.5 on the assemble options for

further details.

QO

1-7-4

N E C UMAS17K ASSEMBLER

3.2.4 Source filename entry formats

source file name [/option’ [/option/.....c.....] 1 [;comment]
source file name [/option [/option/...........] 1 [;comment]

source file name [/option [/option/...........]] [;comment]

.

[Function]

Designates the names of the source files which will be assembled,
and the assemble options which relate to them.

[Explanation]

O]

@

Two or more source filenames may be entered in one line. An
assemble option corresponding to the source file may be
entered after the source filename.

When éntering an assemble option after a source filename, be
sure to include a slash preceding the assemble option. If a
space is entered between the filename and the slash, an error
will be generated.

If more than one assemble option is entered, they should be
delimited by slashes.

A carriage return or line feed should be entered at the
conclusion of designating assemble options in a source file.
The source file name entered can include an indication of the
directory that contains that source file.

[Example]

®

B:\UPD1700] \RAKCLR. ASH
l I

Floppy disk Directory L———35Source file name
drive name

Please refer to Section 4.5 on the assemble options for more

details.

1-7-5

UMAS17K ASSEMBLER N E C

3.3 Sequence File Generation Methods
Verifying what is contained in SAMPLE.SEQ

A>TYPE B:\SANPLE\SAMPLE.SEQ

D17000.DEY HEO)
/L1ST=B:D17000. PRN/XREF=B:D17000. PRN
/HEX=B:D17000. HEX/RO¥=50/NAP] ®

/COLUNN=130/SUK/DOC

KODULEZ. ASK/NOGEN

MODULE1. ASX/GEN]
©}
NODULES. ASX/NOCOND

[Explanation]

At @) the device file which will be assembled is designated.

At @ the assemble options are designated.

® indicates the source module to be assembled, and the assemble
options for each source module. If an assemble option defined at
@ is redefined at (@ the redefined option will be valid when
assembling source files.

A sequence file is generated to assemble the sample programs named
EXI.SEQ and EX2.SEQ. Sequence files may be generated in two ways:
either by using an editor which operates under MS-DOS, or using
the MS-DOS system command COPY. If the entry is short, the COPY
command is adequate. However, the editor will be found to be more
convenient for amending the type of sequence file described above
or entering multiple designations. The procedure used in both
cases is described below.

riSample programs are not currently supported.

1-7-6

N E C UMAS17K ASSEMBLER

(1) Example of the COPY command.

A>COPY CON: B:EX1.SEQ |

D17000.DEY {

/L1ST=B:D17000. PRN/XREF=B:D17000.PRN {
/RO¥=50/COLUNN=130 ¢

NODULE1.ASX {

MODULE2.ASK +

NODULE3.ASX

A

A>

(2) Example of using the editor.
The editor begins to operate at) The filename is EX2.SEQ.
At @ the details as shown below are entered using the screen
editor. Care must be taken to input a carriage return or line
feed.

D17000.DEV ¢

/L1ST=B:D17000. PRN/XREF=B:D17000. PRN {
/RO¥=50/COLUXN=130 }
NODULE1.ASK/NOLIST 4

NODULE2.ASK {

NODULE3.ASN |

At @ the use of the editor is terminated.

1-7-7

N E C UMAS17K ASSEMBLER

CHAPTER 4 ASSEMBLER FUNCTIONS

4.1 Outline

The AS17K reads a designated source module file, and from the
statements entered in that file, generates object files, assemble
list files, memory maps and documents.

The AS17K assembler uses a two pass method. On the first pass, the
symbol table is configured and the mnemonics are changed into
machine language. An area is set aside for undefined symbols.

On the second pass, machine language is assigned to the symbol
region created during the first pass. On completion of the second
pass, an interim object module file is generated. As it is an
interim file, branch address data relating to more than one module
files will not be determined.

The AS17K links interim object module files and generates an
object file. The link process is executed automatically.

The AS17K is further provided with functions which shorten
assembly time and make assembly operations more efficient. The
date is registered in an interim object module file generated
after completion of the second pass. When amending sections of
source module files and reassembling, the dates of generation of
the interim object module file and the source module file of the
same name are compared, and the source module file will only be
assembled if its date is later.

If the date of generation of the interim object module file is the
later, the assembler concludes that the related source module file
has not been amended, and that file will not be assembled.

In this situation, a link process is executed with a interim
object module file which was already in existence when the
assembler began operations.

1-8-1

UMAS17K ASSEMBLER

NEC

4.2 Input/Output Files
AS17K input files are as set out in the table below.

Input filename

Extension

File tvype

Device file

A file containing data peculiar to
the device such as size of ROM and
RAM, number of ports, or reserved
words relating to register files.

. DEV*

Source file

A source file generated using an
editor.

. ASM

Sequence file

A file in which are registered
device files, assemble option
designations and source module
files. Assembling carried out

by designating a sequence file
is more efficient, obviating the
need to designate device files
and assemble options, or sort
module files.

. SEQ

Mask option
data file

A file which stores mask option
designation data. The content
varies depending on the type of
product. It is not required with
products which do not have option
designations. ‘

OPT*

* Files supplied by NEC.

. Note that source file extensions may be changed.

1-8-2

N E C UMAS17K ASSEMBLER

AS17K output files are as set out below:

Output file Extension File
name type

HEX file This is a file which contains
Intel HEX format object codes,

. HEX

with IFL (internal function
lists), and DFL (debug function
lists). The Intel HEX format stop
codes come after object codes and
after IFL/DFLs.

PROM file This is a file which stores Intel . _PRO
HEX format object codes and

IFL/DFLs. The Intel HEX format
stop codes come after the
IFL/DFLs. When downloading .PRO
files from the PROM writer, write

processing can be done by one
write of the object code and
IFL/DFL. (A PROM data file is
used with an SE board.)

Assemble list This file contains assemble lists . _PRN
file for each source module file.
Cross-reference| This file contains cross-reference . PRN
list file lists for each source module file.

However, if the list is not output,
the extension will change to .XRF.

Memory map file| This file automatically generates . _MAP

maps of data memory used and

stores them as memory maps.

Public cross- This file stores cross-reference . PUB

reference list lists of symbols which have been
file publicly declared.

Document file This is a file which contains . _DOoC
documents and module summaries
generated by entering the

documentation generation

directive in source programs.

1-8-3

NEC

UMAS17K ASSEMBLER
Output file Extension File
name type
Report file This file stores assemble reports . _REP
Logging file This file stores error and warning ._LOG
messages output to the monitor
during assembling. The name of this
file is fixed: AS17K.LOG.
Interim object This is an interim file generated . _OBJ
module file for each source module when
assembled. It becomes an input
file for the linking process.

* It should be
.LOG and .0OBJ

noted that the extensions of all these files,

excepted, can be changed.

1-8-4

N E C UMAS17K ASSEMBLER

4.3 Assembler Functions

4.3.1 The interim object module file output function

When assembling starts, the designated source module file (.ASM
file) is converted to machine language and an interim object
module file with the same name as the source file is output as an
.OBJ file. The time and date of output is registered in this
interim object module file.

4.3.2 The link function

The AS17K is an absolute assembler, but is provided with a link
function in order to give it the capability of assembling source
files split into modules. When a source module file is assembled,
an interim object file is output corresponding to each source
module file. Subsequently, when link processing takes place, this
interim object module file becomes an input file. '

4.3.3 HEX file and PROM file output functions

The results of linking interim object module files are output as
HEX and PROM files. The HEX file is divided into two sections:
the object section and the IFL/DFL section, which are used when
loading to the uPD17000 series development tool IE-17K. The PROM
file is an SE board PROM data file. For further details, please
refer to Part 2 Section 5 on assembler output lists.

1-8-5

UMAS17K ASSEMBLER N E C

4.3.4 Functions which reduce assemble time

The AS17K is provided with functions which reduce assemble time,
in the interests of more efficient debugging.

Prior to assembling source module files, the dates on which that
source module file was generated is compared with the date of
generation of the interim object module file of the same name. If
the interim object module file generation date is later, the
assembler concludes that the source module file of the same name
has not been amended, and does not assemble it.

If the date of generation of the source module file is earlier
than the corresponding date for the interim object module file of
the same name, that source module file is assembled. Source module
-files designated after that source module file are all assembled
without conditions.

Further, if the entry order of source module file designations is
altered, added to, or deleted, after the initial assembling, files
after the amended source module files are assembled without
conditions.

The assemble time reduction function may be used effectively if
debugged source module files are entered before source module

files which are undergoing debugging.

1-8-6

N E C UMAS17K ASSEMBLER

Figure 4.1 Processing Procedures with Assemble Time Reduction
Functions

Assembling
starts

Sequence
file read

Is the .ASM

file the same NO
as the .0BJ

Has the .ASM YES
designation
order been

changed?

To next modulel

_—

date of generas
ion of the .ASM file
ater than that of the
OBJ file?

Assemble that module
and generate an
Skip assembling .OBJ file.

of that module.

Is the assembly
of all .ASM files
complete?

Link X
processing

Output
processing]
Terminate

1-8-7

* It is possible to designate
source module files with
extensions other than .ASM.

UMAS17K ASSEMBLER N E C

4.3.5 The assemble list file output function
An assemble list file is output once assembling is complete.

Output control of assemble list files may be carried out through
the assemble options. For more detail, please refer to Part 2,
Section 5 on assemble output lists.

4.3.6 The cross-reference list file output function

The AS17K generates two types of cross-reference list files. The
first is a cross-reference list for each source module file, while
the second is a cross-reference list for symbols which have been
publicly declared (a public cross-reference list).

Cross-reference lists which relate to the BR and CALL instructions
may be included in assemble lists by using the assemble option
BRANCH. For more details on this, please refer to Part 2, Section
5 on assemble output lists.

4.3.7 The document file output function

The AS17K is provided with a function for outputting text
documentation entered in source module files, using the
documentation generation control instruction; this is output in
the one file together with a table of contents. For more details,
please refer to Part 1, Section 3.5 on the documentation
generation functions, and Part 2, Section 5 on assembler output
lists.

4.3.8 The memory map file output function

The AS17K is provided with a function which automatically
generates data memory maps, using source module files, and for
outputting these as a single file. For more details, please refer
to Part 2, Section 5 on assembler output lists.

1-8-8

N E C UMAS17K ASSEMBLER

4.3.9 The report file output function

The AS17K is provided with a function which outputs as a report
file the situation with the use of host memory when assembling is
being carried out, and the time required for assembling. For more
details 6n this, please refer to Part 2, Section 5 on assembler

output lists.

1-8-9

UMAS17K ASSEMBLER N E C

Figure 4.2 AS17K Input/output files

Sequence files (.SEQ)

%evic%lfi le t:ciesiu‘;:‘m: tion t4
i * ssemble option designation
Temporary files — 19 9

© Source module f
0
| J/

designation
<> AS17K

Source module files (.ASM)

é i

Device files (.DEV)
Option data files (.OPT)

£

O
' L

HEX files (.HEX) Assemble list files (.PRN)
PROM files (.PRO) Cross-reference files (.XRF)
Interim object module Public cross-reference files
files (.0OBJ) (.PUB)

Memory map files (.MAP)

Document files (.DOC)

Report files (.REP)

Logging files (AS17K.LOG)

* Temporary files are deleted when

assembling is complete.

They are distinguished by

having extensions of the form .$5$$.

(AS1X. $338, ASI1P, 583
AS1B, $S8S, ASIM, $s85s
AS1D. $338, AS1S, $s8'3
AS1L, $588)

1-8-10

N E C UMAS17K ASSEMBLER

4.4 Methods of Starting Up the Assembler

4.4.1 Files which must be input when starting up the assembler
The following input files are needed in order to start up the
assembler.

(1)

(2)

(3)

Source module file (.ASM)

This is the file in which the source program is entered.
Device file (.DEV)

This is a file prepared for each member of the series defining
the data on ROM/RAM volume and so forth. In addition, this
file defines flag names and so forth in register files.

Mask option data file (.OPT)

This is a file which defines data which relates to mask
options. If using device files for products which have mask
options, this file will, when copied to the current drive, be
automatically read during assembling operations. It is not
needed with members of the series which do not use mask
options.]

For further details please refer to Part 2, Section 4.2 on
assembler input/output files.

4.4.2 Convenient input files

Sequence files (.SEQ)

This is a file in which is entered assemble options, device

filenames and source program filenames required for assembling.

The use of sequence files in assembling is recommended in order to

improve assembling efficiency.

1-8-11

UMAS17K ASSEMBLER N E C

4.4.3 Methods of starting up the assembler
The actual procedures used to start up the assembler are explained
below.

There are three different methods of inputting commands to start
up the assembler.

Input methods

1. ' A>AS17K]

2. I A>AS17K A [directory]<sequence file name> 41
3. A>AS17K A<device file name> A[/<option>/...] A <source

file name>([/<option>/...]

Each of these three methods is explained separately in this
section.

In order to start up the assembler most efficiently, the
use of methods 1 and 2 set out above is recommended, together

with the use of a sequence file.

1. I A>AS17K l Start up

The disk containing the assembler and the device file is inserted

in drive A, and the disk with the source files is inserted in
drive B. "AS17K" is entered at the prompt (A>).
The assembler initiates a memory load operation.

A>AS17K

After assembler operation is initiated, the current directory is
searched for sequence files, and the operations described below

are effected.

1-8-12

N E C UMAS17K ASSEMBLER

©)

@

®

If there is a single sequence file in the current directory
That sequence file is automatically read, and assembling is
carried out on the basis of what it contains.

All sequence file names are allotted a number in order from
one, and a list is displayed on the monitor. The numbers of
sequence files to be assembled can be input here. If no
sequence files are selected, inputting a carriage return or a
line feed will return the user to the mode described below in

Q.

[Example]

A>AS1TK ,
UPD17000 SERIES ASSEXBLER
COPYRIGHT (C) NEC CORPORATION. 1987, 1988
=== SEQ FILE LIST IN CURRENT DIRECTORY ===
1) TESTI.SEQ 2) TEST2.SEQ 3) TESTS.SEQ
SEQ FILE 2 (SELECT NUNBER) =_2 |

TESTPROL.ASK << ASSENBLE START >> 11:24:30 04/11/88

If there are no sequence files in the current directory
If there are no sequence files or if there are no files number
selected in @ above, a carriage return or line feed may be
input; when the prompt is displayed on the monitor as below,
the appropriate filename can be input.
(i) Designating a device file.
(A) If there is a device file in the current directory
When a list of device files is displayed and a message
"DEV file number:" is displayed

selected and input.
DEV file number:

If there is no appropriate device file, it is possible
by inputting a carriage return or a line feed to move
to a prompt which allows a device filename to be
designated.

1-8-13

UMAS17K ASSEMBLER N E C

(B) If there is no device file in the current directory
A device file name may be input after the display
shown below: The extension .DEV must be input even in
situations in which files can normally be designated
with the extension omitted.

DEV file name [.DEV]:

If a file name with an extension other than .DEV is
designated, the message

"invalid file extension name"

will be output, and a display will appear prompting
the user to enter another device filename.

Example 1 When there are two device file names in the
current directory.

A>AS1TK §
UPD17000 SERIES ASSEMBLER
COPYRIGHT (C) NEC CORPORATION. 1887,1988
=== DEV FILE LIST IN CURRENT DIRECTORY ===
1) UPD17102.DEV 2) UPD17051.DEY

-DEY file number :_2 {

Assemble options :_/LIS/NOT/HEX }{
Source file name :_B:TESTPRO2.ASH
TESTPRO2.ASK << ASSEMBLE START >> 11:24:30 04/11/88

1-8-14

N E C UMAS17K ASSEMBLER

Example 2 When there is no device file in the current
directory.

A>AS17K
UPD17000 SERIES ASSEMBLER E2.0D (17 Feb 88)
COPYRIGHT (C) NEC CORPORATION. 1987,1988

DEV file name :_B:\D17000\D]700].DEV ¢
Assemble options :_/LIS/NOT/HEX

Source file name :_B:TESTPRO2.ASM }
TESTPRO2.ASM << ASSEMBLE START >> 11:24:30 04/11/88

(ii) Designating assemble options
The next message output after completion of device
file designation is:

Assemble options

Assemble options may be input here. The input format is:
/<option>[/<option>.....]

Assemble options should be designated using the same
entry format as is used in sequence files. However,
it is not possible in this situation to enter an
option in two lines or more. For details, please
refer to Section 3.2.3 on the assemble cption entry
formats. If no option is to be designated, a carriage
return or line feed should be entered.

1-8-15

UMAS17K ASSEMBLER

NEC

(iii) Designating source filenames

2.

The next message to be output after completion of
assemble option designation is:

Source file name:

At this point source filenames and directories may
be input. The extension may be omitted.

If the extension is omitted, the extension ".ASM" will

be used automatically. It is possible to designate
options following the source file name. After a
source file has been designated, and the option
relating to it entered, a carriage return or line
feed is input. At this point assembling will start.

Note that it is not possible to designate multiple

sourcefiles.

Should any error be made in designations in (i),
(ii) or (iii) above, an error message will be
displayed once assembling begins, and assembling
will halt. If it is desired to halt input and
terminate assembling, a control C should be input.

A>AS17K A<sequence file name> 31

The disk containing the assembler and the device file should

be inserted in drive A, with the disk containing the sequence

files going into drive B.

At the prompt (A>), input

| "as17k AB:SAMPLE.SEQ ¢ |

After this has been done, the assembler will be loaded to

memory, and assembling will begin in accordance with a

sequence file named SAMPLE.SEQ which is contained on the disk

in drive B.

1-8-16

N E C UMAS17K ASSEMBLER

It is possible to enter sequence files without the extension
".SEQ." This extension will be automatically assigned to a
sequence file.

Sequence files are files which contain pre-recorded device file
names, assemble options and source filenames.

For methods of generating sequence files, please refer to Section
3 in Part 2.

[Input example]

A>_AS17K E:SA&ELE,§EQ£

Output list

3. A>AS17K A <device file name> A [/<option>
[/<option>/.....]] A <source file name>

[/<option>/.....

The disk containing the device file and the assembler is inserted
in drive A, and the disk containing the source files is inserted
in drive B. At the prompt (A>), AS17K is input, and on the same
line are entered device filenames, assembler options and source

filenames. The assembler will start assembling.

[Input example]

A>AS17K B:D17000.DEY /NOL/NOX B:MODULE}.ASM/LIS=MODULE1.PRN

| Output list

1-8-17

UMAS17K ASSEMBLER N E C

After this is input, the assembler will be loaded into memory and

assembling will begin in accordance with the device files,
assemble options and source’ files. The directory in which a device
file is contained may also be entered at the point at which a
device file is asked for. The extension .DEV may be omitted. If it
is omitted, an extension will be automatically assigned to the
file. If no directory is specified, the current directory will be
used.

Assemble options are entered in the option blocks in the command
line given above. As with device filenames, assemble option
specifications should be delimited by spaces. An assemble option
entry must begin with a slash. If multiple assemble options are
designated, each should be delimited with two slashes.

Spaces and tabs should not be included in assemble option
specification statements. If spaces or tabs are inserted, the
assembler will interpret these as the termination of an assemble
option entry.

The command line given above provides for the entry of the names
and directories of source files to be entered, plus the assemble
options related to those source files. The assemble option entry
format is the same as given in the above examples of assemble
options. It is to be noted that there are limitations on the
varieties of assemble options which may be used with particular
source files. Only one source file may be designated. For more
details, please refer to Part 2, Section 4.5 on assemble options.

[Example]

A>AS17K UPD17001.DEY /PRM/RO¥=70/%OR=F: TESTPROS.ASH{
UPD17000 SERIES ASSEMBLER

TESTPROS. ASM << ASSEMBLE START >> 11:28:00 12/24 87

1-8-18

N E C UMAS17K ASSEMBLER

4.4.4 Halting during assembly

If it is desired to halt assembly operations after they have
begun, a control C should be input from the keyboard. When the
assembler receives a control C, it will close all open files,
terminate assembling, and return to the MS-DOS system prompt.

1-8-19

UMAS17K ASSEMBLER N E C

4.5 Assemble Options
Assemble options are used to designate working drives, functions,

and file formats for files to be output when assembling.

There are two methods of designating assemble options: they may be
entered in sequence files, or input from the keyboard when
assembling is started. For more details, please refer to Part 2,
Section 4.4 on methods of starting up the assembler.

If no assemble options are designated at all, the preset default
values for the assemble options will be used. It is also possible
to distinguish between designations of assemble options which are
effective for all assembler operations, and those which are
effective for specific split module source files. However, only a
limited number of the assemble options is validly usable in
designations for all source files. For assemble options designable
for all source files, please refer to the list of designations for
each module in.the assemble option 1list.

1-8-20

NEC

UMAS17K ASSEMBLER

Table 4.1 List of Assemble Options

Designable
Option name Default Description or all
modules *

NOO(BJECT] HEX Object(load module file)
HEX, PROM
NOL[ISTj LIS Assemble list output control (o]
LIS(T]
NOX[REF] XRE Cross-reference list output (o}
XRE[F] control
ERR[OR] NOE Error skip control e}
NOE([RROR]
ROW ROW=66 List output page line number

control
GEN NOGEN Control of development in 0
NOG(EN] macro and iteration instruc-

tion lists
COL[UMN] COL=80 List output column number

control
AUT[OLOAD] NOA Automatic load control
NOA[UTOLOAD]
CON([D] NOCON Print control for 0
NOC[OND] conditional statement lists
NOS[EQ] SEQ Option data output control (e}
SEQ
MAP NOM Data memory map output
NOM[AP] control
DOC[UMENT] NOD Document output from
NOD[OCUMENT] assemble list control
BRA[NCH] NOB Buried cross-reference
NOB[RANCH] output control
PROG - Program comment control
TAB NOT Tab control
NOT[AB]
FOR[M] NOF Form feed control
NOF [ORM

1-8-21

UMAS17K ASSEMBLER N E C

REP[ORT] NOR Report output control

NOR[EPORT]

2ZZn 2Z22n=0 Assemble variables (numeric
characters from 0 to 9)

PUB[XREF] NOP Public cross-reference list

NOP [UBXREF] output control

WOR([K] Current | Operating drive designation

drive

SUM([MARY] - Program summary output
control

HOS([T] NOH SIMPLEHOST data output

NOH[OST]) control

* Options which can be designated for all modules are also options
which can be designated for all source files.

1-8-22

N E C UMAS17K ASSEMBLER

4.5.1 The object file output control option

[Entry format])

NOOCBJECT]
[{ HEX(=File name J}]
PROM[=File name]

[Function]

Controls whether or not an object file is output; if object files
are to be output, designates the file names to be output. Both
HEX and PROM files may be designated independently.

[Explanation]
(1) NOO[BJECT]: Option used when object files are not to be

output.

(2) HEX: Option for outputting HEX files to be
downloaded to the IE-17K.

(3) PROM: Option for outputting PROM files to be used
when generating PROMs on the SE board.

1-8-23

UMAS17K ASSEMBLER N E C

(4) File designation
Output filenames may be designated after HEX or PROM.

Filenames are entered using the format "[drive

name: [\directory name\] filename"

If no output file name is entered, the directory and
filename output will be as shown below.

@® when using sequence files
The sequence file and the same directory
Files with the same name as the sequence file and the
extensions .HEX or .PRO.

@ 1If there is one source file to be assembled (a sequence
file is not used)
The source file and the same directory
Files with the same name as the source file and the
extensions .HEX or .PRO.
It is possible to enter output filenames without entering
the extension when designating them. In this situation,
the output file extension .HEX or .PRO will be
automatically assigned. It is also possible to enter in
filename entry columns the MS-DOS reserved names AUX, CON,
PRN and NUL. The order of output is as given below:

AUX ... RS-232C
CON ... Console
PRN ... Printer
NUL ... No file output

[Default value]
HEX

1-8-24

N E C ’ UMAS17K ASSEMBLER

4.5.2 The assemble list file output control option

[Entry format]

[r LIS[TI[=Filename [,PRN]] }]
1 NOLLIST]

[Function]

Controls whether or not assemble list files are output, and
designates the file name of the files to be output.

[Explanation]

(1)

(2)

LIS([T]

The option used to output assemble list files.. There are two
methods, as set out below, of designating what is to be
output.

Without entering filenames

Generates a source filename and file with that name in the
same directory as the source file. If the source program is
split into modules, generates a file with the same name in the
directory containing the source module file. The extension is
.PRN.

File name entry

Generates a file with the designated filename. It is possible
to use AUX, CON, PRN or NUL in the filename. The filename
entry format "[drive name:[Wdirectory\)filename" should be

used. If an extension is not entered, the extension .PRN will
be assigned.

NOL[IST]

The option used if an assemble list file is not to be output.

1-8-25

UMAS17K ASSEMBLER N E C

(3) [, PRN]

If ", PRN" is entered following the entry of a filename, that
file will be output to the printer at the same time as it is
output. However, if LIST=PRN or PRN are entered, an error will
be generated.

(4) If a filename is designated in an option line when carrying
out éplit assembling, a number of lists may be output in the
one file.

[Default value]
LIST

1-8-26

N E C UMAS17K ASSEMBLER

4.5.3 The cross-reference list file output control option

[Entry format]

[{ XRECF1[=Filename [,PRN]] } J
NOXCREF]

[Function]

Controls whether or not a cross-reference list file is output, and
if a file is to be output, designates the name of that file.

A cross-reference list displays all line numbers which reference
symbols and the line number, type, and value of each symbol in a
source program. One cross-reference file is output for one source
module file.

[Explanation]

(1) XRE([F]
The option used to output a cross-reference list file.- There
are two methods of designating files to be output, as given
below.

Entry without filename

C) When an assemble list is output, it is output together
with the file which outputs the assemble list.
Accordingly, the filename is the same as that of the
assemble list.

® 1I1f the assemble list is not output, that is to say when
NOL is designated, é file is output with the same name as
the source file in the directory of the same name as the
source file. In this case, the extension used is .XRF.

1-8-27

UMAS17K ASSEMBLER N E C

Filename entry
Generates a file with the file name designated. This is

used when it is desired to 6utput a file which is
different from the assemble list, or if it is desired,
when split assembling, to have one file with cross-
reference lists output to multiple files. It is possible
to enter as file names AUX, CON, PRN and NUL. Filename
entry should take the format "[drivename:[directory]]
filename. If entry of the extension is omitted, the
extension .XRF will be assigned.

(2) NOX[REF]

This option is used when a cross-reference list file is not to
be output.

(3) [, PRN]

If ", PRN" is entered following entry of a filename, the file
will be output to the printer also. However, an error will be
generated if XRE=PRN or PRN are entered.

(4) Other cross-reference lists are buried format cross-references
to public cross-references and assemble lists. For more
details on designating these, please refer to Section 4.5.14
on the buried cross-reference output control option.

[Default value]
XREF

1-8-28

N E C UMAS17K ASSEMBLER

4.5.4 The error skip control option

[Entry format]

ERRCOR]
[{ NOECRROR] }]

[Function]
This option controls whether assembling is to continue or halt
when an error message is generated during split assembling.

[Explanation]

(1) ERR[OR]
If an error is generated during an assemble operation, once
that source module file has been assembled, assemble and link
processing of the next source module file will be stopped.

(2) NOE[RROR]
Assembling will continue even though an assemble error is
generated. The object relating to the statement which
generated the error will be "074F0H" (NOP instruction).

[Default value]
NOE[RROR]

1-8-29

UMAS17K ASSEMBLER N E C

4.5.5 The list output page row number control option

[Entry format]

[o]

[Function]

This option designates the number of lines in a page for all list
files (assemble lists, memory maps, cross-references, ﬁnd so
forth).

[Explanation]
n indicates the number of lines in one page. The number is entered

in decimal, and must be within the range 50=.n =250.

[Default value]
ROW=66.

1-8-30

N E C UMAS17K ASSEMBLER

4.5.6 The macro iteration directive development control option

[Entry format])

[{ on }]

[Function]

This option controls whether or not statements which contain
entries made by macro and iteration directives are to be developed
in assemble lists and output, and whether output is to be in
accordance with the macro development print control instructions
of the assemble control instruction entered in the source.

[Explanation]

(1) GEN
All statements entered with macro and iteration directives are
developed, and output to an assemble list. The macro
development print control instructions have no effect.

(2) NOGIEN]
The development of statements entered with macro and iteration
directives is in accordance with the macro development print
control instructions LMAC, SMAC, OMAC and NOMAC.

[Default value]
GEN

1-8-31

UMAS17K ASSEMBLER N E C

4.5.7 The list output column number control option

[Entry format]

[COLCUNN]=n :l

[Function]
This option specifies the number of columns in the line for all
types of lists.

[Explanation]
The number of columns is expressed in decimal integers, and must

be within the range 72 to 132.

[Default value]
COLUMN=80.

1-8-32

N E C UMAS17K ASSEMBLER

4.5.8 The automatic load control‘option

[Entry format]

—

[AUT[OLOAD]
NOACUTOLOAD]

[Function]
This option controls whether or not a HEX file is to be sent
automatically to the IE-17K during assembling.

[Explanation]

(1) AUT[OLOAD]

Sends a HEX file automatically to the IE-17K while assembling.

(2) NOA[UTOLOAD])

Does not send a HEX file to the IE-17K when assembling.

(3) The automatic-load control option is only effective when HEX
file output has been designated with the object output control
option.

(4) If the IE-17K is not connected to the host when AUTOLOAD is
selected, the HEX file is not automatically sent.

[Default value]
NOAUTOLOAD

1-8-33

UMAS17K ASSEMBLER N E C

4.5.9 The conditional statement output control option

[Entry format]

CONLD]
[{ NOCCOND] }]

[Function]

This option determines whether statements entered with the
assemble directive with conditions are to be output to the
assemble list unconditionally, or in accordance with the output
list control instructions.

[Explanation]

(1) CON[D]
Outputs statements entered with assemble directives with
conditions to the assemble list without reference to the
output list control instructions SFCOND and LFCOND.

(2) NOC[OND]
Outputs to the assemble list statements entered with the
assemble directive with conditions in accordance with the
output list control instructions SFCOND and LFCOND.

[Default value]
COND

1-8-34

N E C UMAS17K ASSEMBLER

4.5.10 The optional data output control option

[Entry format]

[{ NOSLEQ] } :!

SEQ

[Function]

This option controls whether or not the following details are
output to the first page of the assemble list for each source
module.

@ Details entered with the program comment output control option
(PROG=)

C) Character strings entered on the same line following the
command line for starting the assembler
(command line option=).

® sequence filenames and the details entered in sequence files
designated when beginning assembly operations (SEQ= .).

C) The assemble option list designated when starting assembly
operations.

[Explanation]

(1) NOSEQ
No option data is output to page 1 of the assemble list file.
(2) SEQ

Option data is output to page 1 of the assemble list file.
(3) If NOLIST has been specified with the assemble list-file
output control option, this option does not apply.

[Default value]
SEQ

1-8-35

UMAS17K ASSEMBLER N E C

4.5.11 The data memory map file output control option

[Entry format])

[{ XAP[=Filename [, PRN]] }]

NONCAP]

[Function]

This option controls whether or not MEM and FLG type symbols
defined in a source program, plus their corresponding data memory
addresses (flag positions), are output as a map.

[Explanation])
(1) MAP
A data memory map file is output.
(2) NOM[AP]
Does not output a data memory map file.
(3) Filename designation
An output filename may be designated following MAP.
The filename should be entered in the format
"[drive:[\directory\lfilename'". It is possible to omit entry
of an outpht filename. In this situation the filenames and
directories output will be as foilows:
@® when using sequence files
- sequence file and the same directory
- sequence file and files of the same name with the
extension .MAP.

1-8-36

N E C UMAS17K ASSEMBLER

@

(4)

When there is one source file to be assembled (a sequence

file is not used)

- the source file and the directory of the same name

- the source file and files of the same name with the
extension .MAP.

The extension may be omitted when entering designations of

output filenames. In this situation, the output file will

be automatically assigned the extension .MAP. It is also

possible to use AUX, CON, PRN and NUL in entering file

names.

[, PRN]

If ", PRN" is input, the map list file is also output to

the printer. However, an error will be generated if

MAP=PRN or PRN are entered.

[Default value]

NOMAP

1-8-37

UMAS17K ASSEMBLER N E C

4.5.12 The document file output control option

[Entry format]

NODLOCUMENT]
[{ y]

DOCCUMENT](= Filename (,PPN]]

[Function]

This option controls whether or not a document is output.

[Explanation]

(1) NOD[OCUMENT]
Does not output a document file.

(2) DOC[UMENT])
Outputs a document file.

(3) Filename designation
An output file name may be designated after DOC. The filename
entry format should be "[drive name:[Wdirectory name\)
filename". AUX, CON, PRN and NUL may also be entered in
filenames. If no filename has been entered to be output, the
directory and filename which will be output is as given below.

@ If a sequence file is used
The sequence file and the same directory.
The sequence file name and the name of the same name with
the extension .DOC.

1-8-38

N E C UMAS17K ASSEMBLER

@ 1f there is one source file to be assembled (a sequence
file is not -used)
The source file and the same directory
The source file name and files of the same name with the

extension .DOC.
It is possible to omit entry of the extension when

designating the output filename. In this situation, the
output file will be automatically assigned the extension
.DOC. It is also possible to use AUX, CON, PRN and NUL in
entering filenames.

(4) [, PRN]
If [, PRN] is entered after the filename designation, the
document file will be output to the printer also. However, if
DOC=PRN or PRN is entered, an error will be generated.

[Default value]
NOD[OCUMENT]

1-8-39

UMAS17K ASSEMBLER N E C

4.5.13 The report file output control option

[Entry format]

{ REP[ORT](=Filename [, PRN]] } :l
[NORCEPORT]

[Function]

This option controls whether or not to output as a report file
data on the amount of memory used and time taken by the assembler
to generate an output file.

[Explanation]

(1) REP[ORT)
Outputs a report file.

(2) NOR[EPORT)
Does hot output a report file.

(3) Designating file names
A filename may be designated following REP[ORT]. The filename
entry format should be "([drive name:[/directory
name /)filename". It is also possible to enter AUX, CON, PRN
and NUL in filenames. If no output filename is entered, the
directory and filenames output shall be as follows:

1-8-40

N E C UMAS17K ASSEMBLER

@ 1f a sequence file is used
The sequence file and the same directory.

The sequence file and the files of the same name with the
extension .REP.

@ 1If there is one source files to be assembled (a sequence
file is not used)
The source file and the same directory
The source file name and file of the same name with the
extension .REP.
It is possible to omit entry of the extension when
designating the output filename. In this situation, the
output file will be automatically assigned the extension
.REP. It is also possible to use AUX, CON, PRN and NUL in
entering filenames.

(4) [, PRN]
If [, PRN] is entered after the filename designation, the
document file will be output to the printer also. However, if
REP=PRN or PRN is entered, an error will be generated.

[Default value]
REP[ORT]

1-8-41

UMAS17K ASSEMBLER N E C

4.5.14 The buried cross-reference output control option.

[Entry format])

I:{ BRALNCH] }]

NOBCRANCH]

[Function]

This option controls whether or not, when an address list is
generated, address data contained in the BR and CALL instructions
in the line prior to one containing the label referenced by the BR
and CALL options is to be output.

[Explanation]
(1) BRA[NCH]
Outputs a buried cross-reference to the assemble list.
(2) NOB[RANCH]
Does not output the buried cross-reference.
(3) Output example (assemble list)

Address Symbol Mnemonic Operand
0010 BR TABLEI
0020 CALL TABLEI
[:B-0010, C-0020 -
0100 TABLEL: NOP

1-8-42

N E C UMAS17K ASSEMBLER

(4) A cross-reference output when a BRA[NCH] designation is made
is of the form B-XXXX where the reference follows a BR
instruction, and of the form C-XXXX when the reference follows
a CALL instruction.

(5) This option is not effective if the assemble list file output
control option NOL[IST] has been set.

[Default value]
NOB[RANCH]

1-8-43

UMAS17K ASSEMBLER N E C

4.5.15 The program name output control option

[Entry format])

[PROG="Program name " J

[Function]

This option designates a character string to be output to the
program name column of an assemble option list, assemble list or
cross-reference list. The character string should be enclosed in
double quotation marks.

[Explanation]

(1) Entry format
The character string may contain a maximum of one to seven
characters enclosed by double quotation marks. If eight
characters or more are entered, an error is generated and
assembling will halt.
Program name output control option entries are only possible
in sequence files. If the attempt is made to use this option
in other situations, the invalid option error will be
generated.

(2) If the program name output control option is omitted, the

following will be output to the program name column.
@ 1If using a sequence file: the sequence file name.

@ 1if not using a sequence file: the directory in which the
source file is.

1-8-44

N E C UMAS17K ASSEMBLER

4.5.16 The TAB control option

[Entry format)

[€ ey

[Function]

This option controls whether, when assemble lists are generated, a
tab code is to be output, and whether a space is to be inserted at
the tab code position as if the next character after the tab code

were eight colgmn spaces from the beginning of the line.

[Explanation]

(1) TAB
Outputs a TAB code.

(2) NOT[AB]

See above.

(3) This option should be used with printers which do not
recognize tab codes. If tabs are selected, assembling speed
will be quicker, and the volume of the files used will be
smaller.

[Default value)
NOT[AB]

1-8-45

UMAS17K ASSEMBLER N E C

4.5.17 The form feed control option

[Entry format]

FORCX]
[{ NOFCORN] } ']

[Function]

This option controls whether to introduce a page break in an
output list by a form feed code (the 8-bit JIS code OCH) or the
carriage return/line feed code.

[Explanation]

(1) FOR[M]

The output list page break is inserted by a form feed code.

(2) NOF[ORM]

The output list page break is inserted by outputting carriage
returns/line feeds as far as the line designated by the list
output page line number control option (ROW).

(3) This option should be used with printers which are not able to
recognize form feed codes. If FOR[M] is selected, assemble
time can be speeded up and the volume of the files used can be
reduced.

[Default value]
NOF [ORM]

1-8-46

N E C UMAS17K ASSEMBLER

4.5.18 The assemble variable control option

[Entry format]

n: An integer from 0 to 9.
m: A value between OH and
QFFFFH. =

[2Ziln=n

[Function]
This option sets the value (m) of the assemble variable ZZZn when
assembling starts.

[Explanation]

(1) There are ten types of assemble variable: 22Z0 22Z9; each may
be set independently.

(2) Each assemble variable may be set to OH OFFFFH. Do not use H
if the display is decimal. In the case of a binary display, B
should be used in place of H.

[Default value]

2220 2229 all O
(222n=0)

1-8-47

UMAS17K ASSEMBLER N E C

4.5.19 The public cross-reference list file output control option

[Entry format)

[{ NOP[UBXREF] }]

PUBLXREF](= Filename [,PRN]]

[Function]
This controls whether or not a publicly declared symbol cross-
reference list file is output.

[Explanation])

(1) NOP[UBXREF]
A public cross-reference list file is not output.

(2) PUB[XREF]
A public cross-reference list file is output.

(3) Designation of the filename.
The output filename may be designated after PUB[XREF]. The
entry format for the filename should be "[drive name:
[/directory))" filename. It is also possible to enter AUX,
CON, PRN and NUL in the filename. If an output filename is not
entered, the directory and filename output will be as follows:

1-8-48

N E C UMAS17K ASSEMBLER

(4)

(5)

If using a sequence file

The sequence file and the same directory.

The sequence file and the same filename with the extension
.PUB.

If there are two or more source files to be assembled (a
sequence file is not being used)

The device file and the file of the same name with the
extension .PUB

The source file name and the same directory

The extension may be omitted from the entry when
designating output filenames. In this situation, .PUB will
automatically be assigned as the output file extension.

PRN]

If ", PRN" is entered following the filename designation, the
public cross-reference list file output will also go to the
printer. However, if PUB=PRN or PRN is entered, an error will

be designated.
If there is one source file only to be assembled, this option

will be disregarded.

[Default value]
NOP[UBXREF]

1-8-49

UMAS17K ASSEMBLER N E C

4.5.20 The operational drive control option

[Entry format]

[¥OR[X)=Drive name:]

[Function]
This option designates the drive name which holds the working
files used in assembling.

[Explanation]
(1) Drive name specification

Only one drive name may be specified.

[Example]
WORK=A:

(2) After assembling is complete, all working files are deleted.

[Default value]
Current drive.

1-8-50

N E C UMAS17K ASSEMBLER

4.5.21 The program summary output option

[Entry format]

[SUMCKARY]="Title” [,Filename]]

[Function]

This option designates a certain filename for entry of a program
summary, and designates output of its contents to a document list
file. A part of a character string enclosed in double quotation
marks will be output at the start of the program summary as its
title.

[Explanation]

(1) A maximum of 255 characters may be enclosed by the double
quotation marks.

(2) If an assemble option is designated in the command line, or
spaces are used as the character string in the title section,
an error will be generated and assembling will halt.

(3) This option will not be operative with document list file
output option designation /NOD.

[Default value]
Output not designated.

1-8-51

UMAS17K ASSEMBLER N E C

4.5.22 The SIMPLEHOST data output control option

[Entry format]

[{ HOSLT] } :l

NOHLOST]

[Function]
This option control whether or not to output data required when
using the uPD17000 series development tool SIMPLEHOST.

[Explanation]

(1) NOH[OST]
SIMPLEHOST data is not output.

(2) HOS[T]
SIMPLEHOST data is output to a .OBJ file.

(3) If HOSI[T)] is selected, the following assemble option is
forced:

/LIST/HEX/COND/GEN
In addition to this, object codes output to the assemble list
are all in C4444 format, and C14344 and SFCOND control

instructions entered in the source are inoperative.

[Default value]
NOH([OST)

1-8-52

N E C UMAS17K ASSEMBLER

CHAPTER 5 ASSEMBLER OUTPUT LISTS

5.1 Types of Output Lists
The AS17K is provided with the capacity to output the following
lists after assembling.

Output list Output file Assemble Module
extension option designated

Assemble list . PRN /LIS[T] o)
Option information .PRN /SEQ o
list
Cross-reference lists .XRF .PRN| /XRE[F] o
Memory maps .MAP /MAP
Public cross- .PUB /PUB[XREF]
reference lists
Assemble reports .REP /REP[ORT]
Documents .DOC /DOC[UMENT]

If it is desired to output one of the lists as illustrated above,
it is necessary to designate that list with an assemble option
when assembling starts. For the method of designation, please
refer to Section 4.5 on the assemble options. If no designation ‘is
made with an option, an assemble list, an option information list,
and a cross-reference list will be output to the directory in the
source file (.ASM) as a source file (.PRN) file.

If it is not desired to output these lists, "NO" should be
appended before the option name:

(example:/NOLIST/NOSEQ...).

Apart from the above, the following files may be output.

(1) A logging data file (AS17K.LOG)
This file automatically records start-up messages, begin
messages, error messages and end messages output to the

console from the point at which assembling begins to its
conclusion.

(2) Object files (HEX or PROM files)

As with the other lists, these may be designated by an output
control option.

1-9-1

UMAS17K ASSEMBLER N E C

5.2 List Output Format Controls

(1)

Number of lines per page: This is set in accordance with the
assemble option "ROW=n" (n must be
greater than 50 but less than 250).

(2) The number of columns per line: This is set in accordance with

(3)

(4)

the assemble option "COL=n" (n
should be greater than 72 but less
than 132).
If more than the permissible number of columns in a line is
designated, the section in excess will be deleted. If there
are full-em characters at the position from which the deletion
is to occur, the deletion will take place from one column
prior to that point.
Page break control: This is set in accordance with the
assemble option "FORM/NOFORM".

FORM: Sends an FF/LF code to insert a page break in a list.
NOFORM: Outputs carriage return or line feed codes up to the
line designated by the ROW option.

Note: FF (the form feed code) is the code OCH.
LF (the line feed code) is the code OAH.
CR (carriage return) is the code ODH.

TAB code control: This is set in accordance with the assemble
option [TAB/NOTAB].

NOTAB: When lists are output, spaces are inserted at TAB code
positions in the 'same way that characters coming after
TAB codes appear in each eighth column after the

beginning of the line.

TAB: When lists are output, TAB codes are output as they

are.

1-9-2

NEC

UMAS17K ASSEMBLER

5.3 Outputting the Header
In lists other than documents, the following headers are output as

the first paragraph on each page.

(1) The assembler name and the version number of the assembler.
(2) The device filename and the version number of the device file.

(3) The listing
(4) The time of

page number
(5) The program

title.

assembling, and the page (module order number and

within the module).

name: The character string designated by the PROG
: option.

(6) The module name.
Example: UPD17000.ASM

1-9-3

UMAS17K ASSEMBLER N E C

5.4 Option Data Lists
Data may be output on assemble options, device filenames and

source filenames designated when assembling starts.

(1)

(2)

(3)

Output control options

/SEQ, /NOSEQ

However, note that if NOLIST has been set, a sequence data
file will not be output even though SEQ is designated.
Output file names

These are output on page one of the assemble list.

/LIST: sourcefile. PRN

/LIST=filename: .PRN

Data output

The assemble option is output from the command line.
Example: COMMAND LINE OPTION=D17102.DEV/SEQ/LIS 17102.ASM/XRE
If a sequence file has been designated, the sequence filename
and the contents of the file will be output.
Example: SEQ FILE=B:¥17102.SEQ

D17102.DEV

/SEQ/LIS/COL=100/PROG="17K SAMPLE"

MOD1.ASM

MOD2.ASM/XRE

MOD3.ASM
The module option display
Effective assemble options and their modules may be output if
designated in sequence files and command lines when beginning
assembling. If no option column is designated, the value will
be the default value. If a character string is not designated
with the SUMMARY or PROGRAM options, nothing in that column
will be output.

1-9-4

N E C UMAS17K ASSEMBLER

<Output Example>

AS17K E1.0K 07 «UPD17051 ASSEMBLE LIST» 08:31:00 05/24/88 PAGE 01-001
PROG = SI0 MODE

COMMAND LINE OPTION =

SEQ FILE = SI0.SEQ

A:$AS17K$UPD17051 .DEV

/DOC/MAP /FOR/NOT/
/COL=120/PROG="SI0 MODE"
SIOMST.ASM

SIOSLV.ASM

<MODULE OPTION>

NOOBJECT/OBJECT : OBJECT=SIOMST.OBJ
NOHEX/HEX : HEX=A:$AS17KSUPD17051 .HEX
NOPROM/PROM : NOPROM
NOLIST/LIST : LIST=SIOMST.PRN
NOXREF /XREF : XREF=SIOMST.PRN
NOERROR/ERROR : NOERROR

ROW : ROW=66
NOGEN/GEN : GEN

COLUMN : COLUMN/=120
NOAUTOLOAD/AUTOLOAD : NOAUTOLOAD
NOCOND/COND : COND

NOSEQ/SEQ : SEQ

NOMAP /MAP : MAP=SIO.MAP
NODOCUMENT/DOCUMENT : DOCUMENT=SI0.DOC
NOBRANCH/BRANCH : NOBRANCH

PROG : PROG=SI0 MODE
NOTAB/TAB : NOTAB
NOFORM/FORM : FORM
NOREPORT/REPORT : NOREPORT
NOPUBXREF / PUBXREF : NOPUBXREF
SUMMARY : SUMMARY=

WORK : WORK=

2220 1 2220=0

2221 1 2221=0

2222 : 2222=0

2223 : 2223=0

2224 T 2224=0

2225 1 2225=0

2226 : 2226=0

2227 : 2227=0

72228 : 2228=0

2229 1 2229=0
NOHOST/HOST : NOHOST

1-9-5

UMAS17K ASSEMBLER N E C

5.5 Assemble Lists
It is possible to output statements and object codes, and so forth
in source programs.

(1) Output control options
/LIST,/NOLIST

(2) Output file names
/LIST:SOURCE FILE.PRN
/LIST=filename: filename.PRN

(3) Output formats
@ Line format
The line header format is as set out below.

E STNO LOC. OBJ. M I SOURCE STATEMENT

E: Error code (a single alphanumeric character
indicates the type of error).

STNO: Line number (corresponds to the source file line
numbering).

LOC: Location address (program memory address).

OBJ.: Object code.

M: Macro nesting level.

I: Include nesting level.

SOURCE STATEMENT: Details of the source programs.

() Outputting development statements from the acro/repeat/include
sections.

If macro, repeat or include sections are developed, output is

as set out below.

o The STNO field may be output with a + sign and the
development statement line number until the point at which
macro development terminates.

The development statement line number starts from +1 for
each development.

o The macro and iteration directive nesting level may
be output for the M field.

o The include directive nesting level may be output for the I
field.

1-9-6

N E C UMAS17K ASSEMBLER

® oOutputting error statements

Statements in which errors have been generated are output with

the error code at the beginning of the line, and the error

number at the end of the line. For error numbers and codes,

please refer to the error and warning messages in Chapter 6.
@ object output formats

Object codes in control instructions may be output in the

following formats.

o C14344

o C4444

For further details, please refer to Section 3.3 on control
instructions in Part 1.

1-9-7

UMAS17K ASSEMBLER

NEC

<Output Example>

AS17K E1.0K 07 «UPD17051 ASSEMBLE LIST» 08:31:00 05/24/88 PAGE 01-003

PROG = SI0 MODE

SOURCE = SIOMST.ASM

E STNO LOC. OBJ.

0012 07038
0013 14787
0014 07028

++ + +
»
Wodowm

0015 07138
0016 16786
0017 07128

0018 07138
0019 14786
001A 07128

+ A+

o
HFOWNRFEFO_BOIAAULE WN R

+

001B 07337
001C 1478C
001D 07327

+

001E 1Fi04
47 001F 0CO2E

53 0020 0B510
54 0021 0C054

+ 1 0022 167F1
56 0023 0850F
57 0024 07080
58 0025 0850E
59 0026087080

+ 1 0027 147FE
61 0028 11511

+ 1 0029 07238
+ 2 002A 1E788
64 002B 0C029
65 002C 070A3

NN HFNNNDODR

HER e

[

[

[

1 SOURCE STATEMENT

CLR1
PEEK
AND

POKE

SIOCH

WR.ME.SIOCH SHR 4

WR.#.DF. (NOT SIOCH) AND OFH
.MF.SIOCH SHR 4.WR

INITFLG NOT SBACK.SIONWT.SIOWR0O1 NOT SIOWRQO
: SBACK<-0.SWT<-1.SWRQ1<-1.SWRQ0<-0

SET2
PEEK
OR
POKE
CLR2
PEEK
AND
POKE

CLR2
PEEK
AND
POKE
SKF1
SKF
BR

SIONWT.SIOWRQ1
WR.MF.SIONWT SHR 4
WR.#.DF. (SIOWNT OR SIOWRQl) AND OFH
.MF.SIONWT SHR4.WR
SBACK.SIOWRQO
WR.MF .SBACK SHR 4
WR.#.DF. (NOT (SBACK OR SIOWRQO) AND OFH)
.MF.SBACK SHR 4.WR

;SLAVE ADDR TRANSFER START!
POAB10O0.POABIO1 ;SPECIFY POAO & POAl INPUT PORT
WR.MF .POAB100 SHR 4
WR.#.DF. (NOT (POABOO OR POAB10l) AND OFH)
.MF.POAB100 SHR 4.WR
RXFLG ;1F RX
.MF.RXFLG SHR 4.#.DF.RXFLEG. AND OFH

CHXACK ; THEN GOTO CHXACK

:*****************************

s, 'DATA TRANSFER'
SRR KKK Kk ok k kK Kk k ok k kK koK ok

DATA.TX:

TXB8:

SKT1
PEEK
SKT
BR
PUT

DCNT. #0 ;IF ALL THE DATA HAS BEEN TRANSFERRED.
STOP-COND ; THEN GOTO STOP CONDITION PROCESS

IXE ; INDEX MODE START

.MF.IXE SHR 4.#.DF.IXE AND OFH

DBF0.1XADDR ;MOVE (MEM) ADDRESSED BY 1X TO DBFO0

1X ; INCREMENT INDEX REGISTERS
DBF1.1XAADR ;

1X

1XE ; INDEX MODE END

.MF.1XE SHR 4.#.DF. (NOT 1XE AND OFH)
DCNT. #1 ;DCNT=DCNT-1

SIOSF8 ;WAIT FOR RISING EDGE OF
WR.MF.SIOSF8 SHR 4

WR.#.DF.SI0OSF8 AND OFH

TXB8 ;SHIFT CLOCK FOR BIT#8 OR #9
SIOSFR.DBF ;SIOSFR <- DATA TO SEND

1-9-8

N E C UMAS17K ASSEMBLER

5.6 Cross-reference Lists

Cross-reference lists are lists which output symbol types used in
a source program, evaluations, and the numbers of lines containing
definitions or references.

(1) Output control options
/XREF, /NOXREF
(2) Output filenames
/XREF: sourcefile. PRN (however, the source file extension
is XRF when NOLIST is designated).
/XREF=filename: filename .PRN (XRF)
(3) Data output
@ Line format
The line header format is as set out below.
SYMBOL TYPE A VALUE REF (#DEF)
SYMBOL: Symbol name.
Symbol names are sorted in shift JIS code order
(with en designations, no distinction is made
between upper case and lower case characters), and
output in up to 16 en characters or 8 characters.
TYPE: Symbol type
Data type : DAT
Flag type : FLG
Memory type: MEM
Label type : LAB

Macro : MAC
Others : Flag display
A: Symbol attributes
PUBLIC : P
LOCAL : L
EXTRN : E
VALUE: Symbol value
DAT : <evaluation»
LAB : <evaluation»
MEM : <bank number>. <address>
FLG : <bank>. <address>. <bit position>
MAC ;. ¥*%%*(no symbol value display)

1-9-9

UMAS17K ASSEMBLER N E C

REF

o However, with MEM and FLG types, an evaluation will
be output if entry has been effected without the
use of a bit position segment indicator.

o Symbols defined in other modules may be output to
this column with "EXTRN".

(#DEF): Reference line number (#definition line
number)

If the # is attached, the number is a definition line
number.

1-9-10

N E C UMAS17K ASSEMBLER

<Output example>

ASITX ELOK 07 << WPDIT0S] XREF LIST >> . 08:31:06 05/2(/88 PAGE 01-001
PROG = S10 MOOE

SOURCE = SIOMST, ASH

swBoL TYPE A VALIE /REF(10EF)

CHAK wL %/ 4 ., M A4N , W

DATARX wL ¥/ 8 42 ., H

DATATRY weL %/ U 48

DATATX wL A4 . B

0FO0 A6 LOLOO/E 18 . 3 , 353, 353

oot L oastAs . 8 ., 8, I, 13, 1M

IXA00R ML QS0 24 . % ., 8, 08 , 110

REs WL onws W 8

REFLG A6 LOIG2A 1T . 34 . 31, 31, 48, 461, 481, ®
&1 . &1

s1oJsT WL 41

SIoax L /B

SI0ERR AGLOILSA B . T ., B, T, 1R, 181, 1R

STeP_corD WL B/ S, T G2

™88 wL 48R .

WI_SCLHI WL Fams . 10

TOTAL SYBOLS = 15

2D OF XREF LIST

1-9-11

UMAS17K ASSEMBLER N E C

5.7 Memory Maps

MEM and FLG type symbols used in source programs are output in
memory map format. Subsequent to this, the symbols can be output
in list format with more detailed data.

(1) Output control options
/MAP, /NOMAP
(2) Output filenames
/MAP: Source file.MAP
/MAP=filename: Filename.MAP
(3) Structure
Memory maps may be output in the following order in the one
file, which will have the extension .MAP. If the source
program is split into modules, module units may be output in
the format given below. The output order is the assemble
order.
Memory map
Flag map
Symbol list

o After each bank has been output or if, during output, the
effective number of lines as designated by ROW is reached, a
page break will be inserted.

o In situations in which one address line cannot be output on
the page, or it is not possible to output only one page, a
page break will be inserted immediately prior.

o Symbol names may be output in up to eight en characters. If
this number is exceeded, an en asterisk will be substituted
for the eighth een character and printed. If four em
characters is exceeded, an en asterisk will be printed in
place of the fourth character.

1-9-12

N E C UMAS17K ASSEMBLER

5.7.1 Memory maps
Each bank may be output as described below.

o Address columns which contain symbols are divided into upper and
lower portions by a row of dots. The names of symbols whose
attributes are PUBLIC will appear in the top section, while
symbols with LOCAL attributes will appear in the lower section,

o It is possible to output up to 67 symbols in the one address.
Any more symbols will be disregarded.

o If there is no MEM type symbol in the source program, there will
be no output.

1-9-13

UMAS17K ASSEMBLER N E C

<Output example>

AS17K E1.0K O7 << UPD17051 DATA MEMORY MAP >> 10:29:59 05/23/838 PAGE 02-001
PROG =

SOURCE = 12CSLY.ASM

(PUBL1C/LOCAL MAP) BANK = 0
ROW
7T 6 5 4 3 2 1 o

! ! | TP ! 1 ! ! to

! I ISAVEWR | 1 ! ! ! |

! ! {IXADOR | ! 1 ! ! 1

1 1 [N | 1s1013 i1si1012 | ! [I}

1 1 ISAVERPL | | PR R | 1 1

1 ! 10CNT ! ! ! 1N ! 1

1 ! ! ! | t 1 1 12

! ! fovenand! ! ! ! ! 13 ¢

! ! | SAVEDSF | ! ! ! 1 ! o
L

1 1 [| 1 ! ! 1 [

! ! ISAVEPSW | 1 ! ! 1 !

! ! | EEERTRTES] ! ! ! ! s

1 ! ISAVEMPH ! ! L ! 13 I

! ! | SO | ! ! ! ' ' 6

! ! ISAvemPL ! ! ! ! ! !

! ! ! ! ! ! ! ! 17

! ! ! ! ! ! ! ! 13

! ! ! 1 ! ! ! ! s

! ! 1 ! 1 ! ! 1 A

! ! ! ! 1 ! ! ! |18

! ! ! ! ! ! ! ! tc

! ! ! ! ! ! ! ! 10

! ! ! ! ! ! ! ! ! E

1 !] ! ! ! ! ! tF

1-9-14

N E C UMAS17K ASSEMBLER

5.7.2 Flag maps
Each bank may be output as shown below.

o Data memory addresses which have symbols in the flag map left

column, or upper part of the column, will output bit position
_.numbers.

o Address columns which contain symbols will be divided into upper
and lower sections by a line of dots. Symbols with PUBLIC
attributes will appear in the top section while LOCAL attribute
symbols will appear in the lower section,

o If there is no FLG type symbol, there will be no output.

o Symbol names are output in up to eight en characters. If this
number is exceeded, an en asterisk will be printed in the place
of the eighth character. If four characters is exceeded, an en
asterisk will be printed in the place of the fourth character.

<Output example>

AS1TK E1.0K O7 << UPD170S1 FLG MAP >> 10:29:S8 05/23/88 PAGE 02-002
PROG =
SQURCE = 12CSLV.ASM'

(FLAG MAP) BANK = O

ISIOERR IRXFLG ! t !

OF ! ! ! | I !
! ! ! 108F00 |

1-9-15

UMAS17K ASSEMBLER N E C

5.7.3 Symbol lists
Symbols displayed in memory maps and flag maps may be output as

follows:
The line header will be as given below.

SYMBOL TYPE BNK LOC BIT INFORMATION

SYMBOL: The symbol name is output in up to eight en
characters. If the symbol name exceeds eight en
characters, an asterisk will be printed out at the
eighth character. If four characters is exceeded,
an asterisk will be printed out at the fourth

character.
TYPE: The symbol type should be either MEM or FLG.
BNK: Bank number
LOG: Data memory address
- BIT: The bit is a FLG type symbol only whose position may

be output. The relevant bit of 4-bits is displayed as
1, while other bits are displayed as (.).

INFORMATION: Comments in lines which define symbols in source
programs may be output.

1-9-16

N E C UMAS17K ASSEMBLER

<Output example>

AS1TK E1.0K 07 << UPD1T70S1 DATA MEMORY MAP >> 10:29:59 05/23/88 PAGE 02-003
PROG =

SOURCE = [2CSLV.ASM-

(DATA AREA |NFCMATION)

SymaoL TYPE BNK LOC BIT INFOMATION

DBFOO FLG O F ...1
SAVEDSF MEM O S3 SAVE AREA OF DBF-0

SAVEWPH MEM O 55 SAVE AREA OF MPH

SAVEWPL MEM O 56 SAVE AREA OF MPL

SAVEPSW MEM O 54 SAVE AREA OF PSW

SAVERPL MEM O 51 SAVE AREA OF RPL

SAVEWR MM O SO SAVE AREA OF WR

S1012 MM O 12 S10 MODE SELECT

sio3 MEM O 13 S10 MODE SELECT

DCNT MEM O 51

IXADDR ~ MEM O 50

RFLG FLG © 10 .1..)

SICERR FLG 0 10 1... DEFINE BIT3 IN DATA MEMORY ADDR 10H OF BANK O

1-9-17

UMAS17K ASSEMBLER N E C

5.8 Assemble Reports

These reports contain the results of executing assemble
operations.

(1) Output control options
/REP, /NOREP

(2) Output filenames
/REP:sourcefile.REP
/REP=filename: filename.REP

(3) Types of reports

The following types of assemble reports may be output.

Module reports
Final phase reports
Total reports

5.8.1 Module reports
Module reports are lists which output the time required for
assembling each source module, the memory area required for

assembling, and the file sizes, in bytes of both input and output
files.

(1) Time required for assembling
A list may be output containing the assemble start time,
finish time and time elapsed.
(2) Memory volume used in assembling
The assemble area is the volume of memory provided when
assembling starts. If the volume of this region is exceeded
during assembly, an error will be generated.
(3) Input and output file sizes
o As with assemble and cross-reference lists, files with the
extension .PRN may be output: only the size of the .PRN
file will be displayed.
o The sizes of input and output files used in assembling may
be output as is shown in the following examples. However,
temporary files may not be output.

1-9-18

NEC

UMAS17K ASSEMBLER

<Output example>

ASITK ELOX 06 << UPDIT002 REPORT 3>
PROG =

SOURCE = SUMCK2, ASH

< MOOULE REPORT >

09:16:38 05/23/88 PAGE 02-001

| PROCESS

L STRT | B0 | Ewsm|

| ASSDBLE PHASE - |

1 09:16:2) | 09:16:22 | 00:00:01 |

| ASSEBLE PHASE - 2 (PASS 1)

1 09:18:22 | 09:96:27 | 00:00:05 |

| ASSBSLE PHASE - 3 (PASS 2)

ios-w'zﬂ'nsxsz?immwi

1 PROGRAN LISTING losnznusassalwmnl
| CR0SS REFERDICE LISTING mwmmwmwmml
| P LIST 1 09:16:35 | 09:16:35 | 00:00:00 |
’ | TomL | 00:00:17 |
| 2r e EREEEE
| SYSTEN HMORIES naml eIl a1t

1 DEVICE FILE TABLE (RESERVED WORKS...

1
I o681l sl w01l

| INTERMEDIATE co0e | ozm w1l 311
| INTERMEDIATE CO0E FILE Uz ot o1l
| SWSoL TABLE | 401 zs1 411
1 CROSS REFEREMCE TABLE I om0l uMl 1311
| vacko e 110l or o1t
! j 01 ot o1l
| saRce R | w1 sl 211
1 FILE 1/0 BFFER Lol ¢! 0z
1 onex aeeh I

1-9-19

UMAS17K ASSEMBLER N E C

<Output example>

ASI E1. 0K 0S << UPD17002 REPORT > 09:16:38 05/23/88 PAGE (2-002
m-

SURCE = SUYEX2 ASH

< HOOLE REPORT >

1 | FILE WVE | PaE | SIE | LE |
| SORCE | SUCX2. ASH i | st Wi
| IveLloe | j f j (
| 0BECT | j j))
1 PRULST | srox2 Pey ! s1 1l 3wl
| X LST | i i ! j
[1D MAP | SEXO WP j 3l w9l ssl
! i i ! j j
TWR o i t) I
TOTAL BRES = 13

TOTAL WARMINGS = 0

1-9-20

N E C UMAS17K ASSEMBLER

5.8.2 Final phase reports

The time required for the final phase of each process, and the
file sizes, may be output as shown below.

A final phase report is output giving the time required for link
processing after source modules have been assembled, the time
required to generate the output files created through link
processing, the time required for the generation of document
files, and the amount of memory used.

<Output example>

ASITK E1.0X 05 << UPDIT002 REPORT > 09:17:00 05/23/88 PAGE 00
PROG =
< FINAL PHASE REPORT >

1 PROCESS | STWRT | B0 | EwSD!
I LI 1 08:16:38 | 09:6:40 1 00:00:01 |
| PUBLIC CROSS REFERENCE [09:16:39 | 09:16:39 | 00:00:00 |
1 O LIsT | 09:95:40 | 09:17:00 | 00:00:20 |

1 { I) !
| ToTAL | 00:00:21 |
D e By

l | FILE WE | sz |
e I !
LR | ! !
| PUB LIST | ! l
100G LIST | SWexaL boc KX

t +

1-9-21

UMAS17K ASSEMBLER | N E C

5.8.3 Total reports
Total reports list the total time required for all assembly

operations from start to finish, the number of public symbols, the
number of local symbols, the number of macro developments, the
number of lines, the total number of errors and the total number

of warnings.

<Output example>

ASITK E1.0K 06 << UPDITORR REPORT %> 09:17:00 05/23/88 PAGE 0O
PROG =

< TOTAL REPORT >

| PROCESS | STRT | B0 | eSOl

L START PHASE 1 09:16:07 | 09:16:09 | 00:00:02 |

1 Swex, as 1 09:16:08 | 09:16:21 | 00:00:12 |

I SweR At | 09:16:21 | 09:16:39 | 00:00:18 |

1 FINAL PHASE 1 09:16:39 | 09:17:00 | 00:00:21 |

| TOTL | 00:00:53 |
e}

PUBLIC SY'BOLS = 162
LOCAL SYBOLS = |
MACRO EXPANTION —— 0 TI'ES, 0 LINES
TOTAL ERRORS = 14
TOTAL WARNINGS =]

END OF REPORT

1-9-22

NEC

UMAS17K ASSEMBLER

5.9 Public Cross-reference Lists
This type of list outputs the symbol cross-references created
through referring to external modules when carrying out split

assembling.

(1) Output control options

/PUB/NOPUB.

(2) Output filenames

/PUB: sourcefile.PUB
/PUB=filename: filename.PUB

(3) Data output

@ Line format

The line header is as set out below:

SYMBOL TYPE VALUE REF (#DEF)

SYMBOL: Symbol names are sorted in shift JIS code order
(no distinction is made between upper case and
lower case characters when they are designated as
en characters) and up to 16 en or 8 characters may

be output.
TYPE: The symbol type may be output
VALUE: The symbol value

REF (#DEF):

The line number of the reference (# indicates
the line number of a definition)
The output format for line numbers is [mm]
1111--iii

mm : module number

1111: 1line number in a module

iii : development line number

If one reference or definition line number

only can be output, consecutive lines will be
output.

1-9-23

UMAS17K ASSEMBLER

NEC

<Output Example>

AS17K E1.0K.05 «4PD17102 PUBXREF LIST» 09:16:01 05/23/88 PAGE 001

PROG =

SYMBOL

AKEYS51
AKEY52
AKEY53
AUTO01
AUTOOF
FLG1
KEYI
KEYJ
KEYP
MEM1
MEM2
LABEL1
LABEL2
LABEL3
LABELA
LABELB
LABELC

TYPE

MEM
MEM
MEM
FLG
FLG
FLG
DAT
DAT

TOTAL SYMBOLS =

m

END O

o

0.08 /[11#
0.0C/[1]#
0.0D /([1]#

.63.1/[11#
.64.2 /[1]#
.10.1 /(1)

E/[114#

1/(11#

4/1011#
.01 /(1]
.02 /(1]
.33 /111+#
.34 /[11#
.35/([11#
200 /[1]#
300 /[1)#

P RRHROO

400 / (114,

VALUE /REF (#DEF)

17
18

-[2]
. [2]
. [2]
-[2]
-[2]
S[11#
-[2]
.[2]
. [2]
L[11#
L[11#
.21
.21
- (2]
- [2]
-[2]
- [2]

1-9-24

.[2]

.[2]
.[2]

6

NEC

UMAS17K ASSEMBLER

5.10 Documents

Documents consist of text and tables of contents.

(1) Output control options
/poc, /Nopoc

(2) Output filenames
/DOC: Sourcefile.DOC

/DOC=filename: filename.DOC

5.10.1 Tables of contents

Tables of contents to documents display €ach title in the text of

the document and its page number.

[Example]

AS17K El. OK 07 «uPD17051 DOCUMENT» 10:30:07 05/23/88

TABLE OF CONTENTS

SI0O MASTER MODULE

SI0O MASTER MODE EXAMPLE
,DEFINITION OF FLAG'
,DEFINITION OF MEMORY'
,START CONDITION'
+SEND SLAVE ADDR'
+DATA TRANSFER'
+ACK CHECK'
+CHECK DATA DIRECTION'
,DATA RECEIVE'
»STOP CONDITION
SIO SIAVE MODULE
SI0 SIAVE MODE EXAMPLE
DEFINITION OF MEMORY'
,ENABLE SIO SIAVE'
+DEFINITION OF SAVE AREA'
+SAVE SYSTEM REGISTERS PART I'
+SLAVE ADDR COMPARE'
,SAVE SYSTEM REGISTERS PART II'
+,JUDGE READ OR WRITE'
+SLAVE TX PROCESS'
+SLAVE RX PROCESS'
, TERMINATE PROCESS' —

Designated with the program
summary output control option.

Designated with the SUMMARY
control instruction

o The title "TABLE .OF CONTENTS" is output to page 1 only.
is set by the SUMMARY control instruction line

o The line spacing
spacing command.
o To end the table

PAGE

-

e

N

LFnn.

The default is single line spacing.

of contents, a space is inserted when entering

the title with the SUMMARY control instruction or the program

summary output control option.

1-9-25

UMAS17K ASSEMBLER N E C

5.10.2 The text of the document
There are three levels in the text of a document: programs,

modules and routines corresponding to the source program.
Programs, modules and routines are output as "titles",
"summaries", and "data".

Program titles and summaries are entered with the program summary
output control instruction, while module and routine titles and
summaries are entered with the SUMMARY control instruction. Data
on symbols in modules and routines can be automatically output.
For more details, please refer to Part 1 Section 3.5 on the
documentation generation functions.

(1) The title of a program is a character string designated by the
first parameter in the program summary output instruction
option.

(2) The program summary is the contents of the file designated by
the second operand in the program summary output control
option.

/SUM[MARY]="0.0 ABSTRACT"

A filename summary is a character string entered in a file
designated by a filename. If there is no file, no program
summary text will be output.

(3) Module titles and summaries
Titles and summaries may be designated with the SUMMARY
control instruction which appears at the beginning of each
module and output.

(4) Module data
(a) Lists PUBLIC symbols declared in modules.

(b) Lists EXTRN symbols declared in modules.

(c) Program memory address ranges in modules.

With (a) and (b), the symbol name is output distinguished by
type. The character string enclosed in parentheses following
PUBLIC or EXTRN is the symbol type. (c) is output in four
hexadecimal digits.

(5) Routine titles and summaries
Routine titles and summaries are designated by second and
subsequent SUMMARY directives appearing in each
module.

1-9-26

N E C UMAS17K ASSEMBLER

(6) Routine data -- Symbol lists in summaries
Symbols referenced in summaries of routines are sorted by
symbol name and output. If a symbol is referenced several

times, it will still be output only once. For the meanings

of symbols output, please refer to the section on the

documentation generation control instruction.

¢ The effective number of characters in a symbol name is 12
en characters; characters in excess of 12 will not be
output.

o After symbols which are output to the "BRANCH TO" page, the
line in which that symbol is entered in the source program,
and comment statements from the same line, will be output.

o If parentheses are attached to a symbol name, it indicates
that that symbol is used in an operation.

(7) Titles
Titles are output as character strings enclosed in quotation
marks following the command .TITLE, which is used by the
SUMMARY control inétruction to enter titles.

1-9-27

UMAS17K ASSEMBLER N E C

<Source list input example>

SUMMARY '$, 'SI0 MASTER MODULE'

This module gives an example of SI0 interface master mode.

$
SUMMARY % 'SI0 MASTER MODE EXAMPLE.

Gives an example of SI0 master transmission and reception modes.
KKK KKK KARAKAAKRKAKARR KA KRR A A ARk kkkkk kX

'DEFINITION OF FLAG'
I L T T T

e oP

SIOERR FLG 0.10H.3 ;DEFINE BIT#3 IN DATA MEMORY ADDR OF 10H BANK 0
;AS SI0 ERROR FLAG

POAl FLG 0.70H.1 ;DEFINE BIT#1 IN DATA MEMORY ADDR 70H OF BANK 0
POAO FLG 0.70H.0 ;DEFINE BIT#0 IN DATA MEMORY ADDR 70H OF BANK 0
RXFLG FLG 0.10H.2
DBF00 FLG 0.0FH.O

<Assemble list output example>
AS17K E1.0K.07 «MPD17051 ASSEMBLE LIST» 08:31:00 05/24/88 PAGE 01-002
PROG = SI0 MODE
SOURCE = SIOMST.ASM

E STNO IOC. OBJ. M I SOURCE STATEMENT

1 SUMMARY '$, 'SIO MASTER MODULE'

2

3 This module gives an example of SIO interface master mode

4 $

5 SUMMARY % 'SIO MASTER MODE EXAMPLE.

6

7 Gives an example of SIO master transmission and reception

modes .

8 %

9 shkkkkAkhkhkhkhkhkhkhkhkhkkhhhhkkhhkkkhk

10 HS 'DEFINITION OF FLAG'

11 SRR AKRKARRKKKRA KA KAk Ak kA kkkk k&

12 :

13 0108 SIOERR FIG 0.10H.3 ;DEFINE BIT#3 IN DATA MEMORY ADDR 10H OF BANK O

14 ;AS SIO ERROR FLAG
R 15 0000 074F0 POAl FIG 0.70H.1 ;DEFINE BIT#1 IN DATA MEMORY ADDR 70H OF BANK 0 049
R 16 0002 074F0 POAO FIG 0.70H.0 ;DEFINE BIT#0 IN DATA MEMORY ADDR 70H OF BANK 0 049

17 0104 RXFLG FLG 0.10H.2

18 00F1 DBFOO FIG 0.0FH.O

19 :

1-9-28

N E C UMAS17K ASSEMBLER

<Output example>

Page 1
SI0 MASTER MODULE

This module gives an example of SI0 interface master mode.
ADDR RANGE : 0000H - 0021H
SI0 Master mode example.
Gives an example of SI0 master transmission and reception modes.

ENTRANCES Hid

MEMORIES CHANGED : SAVEDBF SAVEMPH
SAVEMPL SAVEPSW

MEMORIES REFERRED Hd

MEMORIES MANIPULATED :DCNT

FLAGS CHANGED :RFFLG

FLAGS REFERRED Hind

DATA REFERRED H

BRANCH TO :SIOLSET

SUBROUTINES CALLED e

LABELS MANIPULATED =

SYSTEM CALL H

1-9-29

NEC

UMAS17K ASSEMBLER

CHAPTER 6 ERROR AND WARNING MESSAGES
6.1 Assembling Errors
If the AS17K detects
assembling, an error

errors in parameter entries designated when
message will be displayed and assembling will

halt.

Message

file not found

Cause

File designated not in drive and directory
designated

Program action

Assembling terminates

User action

Designate the correct file

Message

File length failed

Cause

Data required to start assembling is not in
the file designated.

Program action

Assembling terminates

User action

Designate the correct file

Message

file too large

Cause.

The volume of the file designated is too
large for the memory

Program action

Assembling terminates

User action

Increase memory volume or reduce the size of
the file

Message

Invalid file extension name

Cause

Filename designated following the device
filename [.DEV] does not have the extension
.DEV

Program action

Outputs a prompt for a device filename again

User action

Input the correct device filename

Message

Invalid option

Cause

Incorrect option setting -- option name or

parameters are incorrect

Program action

Outputs incorrect option and terminates
assembling

User action

Specify the correct option

1-10-1

UMAS17K ASSEMBLER N E C

Message Out of memory
Cause Memory volume insufficient

Program action | Assembling terminates

User action Reduce the number of options, or increase
memory volume, or change the working drive

designation

1-10-2

N E C UMAS17K ASSEMBLER

6.2 Errors which relate to source programs

If there is an error in an entry in a source program, the line
number and statement containing the error will be output to the
monitor along with an error message when assembling is executed.
In addition to this, an error code will be printed at the
beginning of the statement line in the corresponding assemble
list, with an error number at the end of the line. The messages
displayed on the monitor are all stored in a file called
AS17K.LOG; it is therefore possible to check them later.

Warning messages (Code: W) do not appear on the monitor, but are
stored in the AS17K.LOG file. When an error has been generated,
the assembler ignores that line and continues assembling.
However, if it is determined that the line containing the error
also contains a uPD17000 instruction, NOP (074F0) is assigned as

an object code.

1-10-3

NEC

UMAS17K ASSEMBLER
No.11 |Code O | Message Illegal first operand type
Cause The first operand type is illegal.
User action | Enter the correct type expression.
No.12 |[Code O | Message Illegal second operand type
Cause The second operand type is illegal.
User action | Enter the correct tyﬁe expression.
No.13 |Code O | Message Illegal third operand type
Cause The third operand type is illegal.
User action | Enter the correct type expression.
No.14 |Code V | Message Illegal first operand value
Cause The first operand value is illegal.
User action | Check that the operand value is
permitted by the product.
No.15 |Code V | Message Illegal second operand value
Cause The second operand value is illegal.
User action | Check that the value of the operand
is permitted by the product.
No.16 |Code V | Message Illegal third operand value
Cause The third operand value is illegal.
User action | Check that the value of the operand
is permitted by the product.
No.17 |Code S | Message Must be comma
Cause A comma has not been entered.
User action | Enter a comma in the correct posi-
tion
No.18 |Code R | Message Out of address range
Cause The address range is incorrect.
User action | Check the program memory address
value, and enter a orrect value.
No.19 |[Code A | Message Illegal addressing
Cause The addressing operation is
incorrect.
User action | Perform the address operation
correctly

1-10-4

NEC

UMAS17K ASSEMBLER
No.20 |Code Message Unreferenced symbol
Cause The symbol has not been referenced.
User action | Check if the symbol is necessary.
If it is not, delete it; if it is,
make a reference to it. '
No.21 |Code Message No IF statement
Cause No IF statement to correspond to an
ENDIF.
User action | Enter the IF statement in the correct]
position.
No.22 | Code Message No CASE statement
Cause No CASE statement corresponding to
an ENDCASE.
User action | Enter the CASE statement in the
correct position.
No.23 |Code Message No REPT statement
Cause No REPT statement corresponding to
an_ ENDR.
User action | Enter the REPT statement in the
correct position.
No.24 |Code Message No IRP statement
Cause No IRP statement corresponding to
an_ ENDR.
User action | Enter an IRP statement in the correct]
position.
No.25 |Code Message Symbol define error
Cause Symbol definition is incorrect.
User action | Enter the symbol definition directive
and the operand correctly.
No.26 |Code Message Invalid address
Cause The address specification is
incorrect.
User action | Enter the correct address.
No.27 |Code Message No OPTION statement
Cause No OPTION statement corresponding to
an ENDOP.
User action | Enter an OPTION statement in the
correct position.

1-10-5

NEC

UMAS17K ASSEMBLER
No.28 |Code P | Message No END statement
Cause No END at the end of a statement.
User action | Enter the END statement
No.29 |Code P | Message No ENDIF statement
Cause No ENDIF statement for an IF
statement.
User action | Enter an ENDIF statement in the
correct position
No.30 (Code P | Message No ENDCASE statement
Cause No ENDCASE statement for a CASE
statement.
User action | Enter a ENDCASE statement in the
correct position.
No.31 |Code P | Message No ENDR statement
Cause No ENDR statement for REPT or IRP.
User action | Enter an ENDR statement in the
correct position.
No.32 |Code P | Message No ENDM statement
Cause No ENDM statement for a MACRO.
User action | Enter an ENDM statement in the
correct position.
No.33 [Code P | Message No ENDP statement
Cause No ENDP statement corresponding to
PUBLIC BELOW.
User action | Enter an EDP statement in the
correct position.
No.34 |[Code P | Message No ENDOP statement
Cause No ENDOP statement for OPTION.
User action | Enter an ENDOP statement in the
correct position.
No.35 [Code N | Message Nesting overflow
Cause 40 levels of nesting exceeded with
IF, MACRO, REPT,IRP, etc.
User action | Reduce nesting levels to 40 or below.
No.36 |Code O | Message Operand count error
Cause Number of the operand is incorrect.
User action | Enter the correct number of operands.

1-10-6

NEC

UMAS17K ASSEMBLER
No.37 |Code Message Syntax error
Cause Syntax error.
User action | Enter using the correct syntax.
No.38 |Code Message Syntax memory overflow
Cause System memory is insufficient.
User action | Increase the memory area.
No.39 |Code Message Symbol area overflow
Cause Symbol area is insufficient.
User action | Increase the symbol area or decrease
the number of symbols.
No.40 |Code Message Invalid EOF statement
Cause. Incorrect EOF statement is described.
User action |Delete if not necessary.
No.41 |Code Message Invalid ENDR statement
Cause ENDR statement in wrong position.
User action | Enter the statement in the correct
position.
No.42 |Code - Message Invalid EXITR statement
Cause EXITR entered in the wrong position.
User action | Enter EXITR In the correct position.
No.43 |Code Message Invalid ENDM statement
Cause ENDM entered in the wrong position.
User action | Enter ENDM in the correct position.
No.44 |Code Message Invalid value
Cause .Incorrect value is descrived.
User action | Enter the correct value.
No.45 | Code Message Invalid type
Cause Incorrect type expression is
described.
User action | Enter the correct type expression.
No.46 |Code Message Invalid BANK number
Cause Incorrect BANK number is described.
User action | Enter the correct BANK number.
No.47 | Code Message ROM address error
‘Cause Source is too large for the ROM
address:
User action | Make the source shorter.

1-10-7

NEC

UMAS17K ASSEMBLER
No.48 |Code O | Message ORG address error

Cause The operand value is smaller than
the immediately preceding value.

User action | Enter a value which is larger than
the preceding address value.

No.49 | Code R | Message Used reserved word

Cause The reserved word has been defined
as a new symbol.

User action | Change the symbol name to something
different from the reserved word.

No.50 | Code R | Message No reserved word

Cause Reserved word has not been described
in correct position.

User action ﬁnter the correct reserved word.

No.51 | Code I | Message Invalid data length

Cause Number of characters greater than
permitted value ‘

User action | Enter the correct number of
characters.

No.52 | Code N | Message Include nesting error

Cause More than eight levels of include

User action | Ensure that there are no more than
eight levels of includes

No.53 | Code O | Message Duplicated OPTION statement

Cause OPTION block is duplicated.

User action | Enter one option block only per
source program.

‘No.54 | Code M | Message Macro area overflow

Cause MACRO area is insufficient.

User action | Make the macro definition statements
smaller, or, reduce the number of
symbols in the macro, or, extend the
area.

No.55 | Code R | Message REPT area overflow

Cause Repeat area is insufficient.

User action | Make the repeat definition smaller,
or, enlarge the area.

1-10-8

NEC

UMAS17K ASSEMBLER
No.56 |Code Message Invalid OPTION group number
Cause The OPTION group number is incorrect.
User action | Enter the correct number.
No.57 |[Code Message Symbol multi defined
Cause The defined symbol is in duplication.
User action | Describe a different name for the
| symbol.
No.58 | Code Message Undefined symbol
Cause The symbol described has not been
defined.
User action | Enter a defined symbol, or, define
the symbol.
No.59 |Code Message Invalid Pseudo
Cause Directive has not been correctly
described.
User action | Enter the directive correctly.
No.60 |Code Message Invalid mnemonic
Mnemonic has not been correctly
. described.
User action | Enter the correct mnemonic.
No.61 |Code Message include file open error
Cause No file, or, area insufficient.
User action | Designate the correct include file;
or, increase the memory area.
No.62 | Code Message parser stack overflow
Cause Parser stack is insufficient.
User action | Make sure the stack level is 12 or
] less.
No.63 | Code Message Bank unmatch
Cause A flag has been entered with a
different bank number from the
operand in a built-in macro.
User action |Provide a flag with the same bank
number.
No.64 | Code Message No EOF statement
Cause No EOF in a include file.
User action | Enter EOF at the end of the file.

1-10-9

NEC

UMAS17K ASSEMBLER
No.65 |Code A | Message Statement after END
Cause There is a statement after an END
statement.
User action |Delete the statement after the END
statement.
No.66 |Code W | Message Statement after EOF
Cause There is a statement after an EOP
statement.
User action | Delete the statement after the EOF
statement.
No.67 |Code A | Message Address error
Cause Address designation is incorrect.
User action |Designate an address which is
permitted by the product.
No.68 [Code W | Message Operation in OPTION
Cause An instruction other than an OPTION
designation has been entered in an
OPTION block.
User action | Delete the instruction.
No.69 |Code C | Message Invalid CASE LABEL
Cause A label other than a numeric value
label has been entered in a CASE
block.
User action:|Delete the label
No.70 |Code O | Message Invalid operand
Cause The operand has not been described
correctly.
User action | Enter a correct operand.
No.71 |Code O | Message Illegal first operand type ‘and value
Cause Type and value of the first operand
are incorrect.
User action | Enter a correct operand.
No.72 |Code O | Message Illegal second operand type and value)
Cause Type and value of the second operand
are incorrect.
User action | Enter a correct operand.

1-10-10

NEC

UMAS17K ASSEMBLER
No.73 |Code O | Message Illegal third operand type and value
Cause Type and value of the third operand
are incorrect.
User action | Enter a correct operand.
No.74 |Code U | Message Undefined first operand symbol
Cause First operand symbol has not been
defined.
User action | Enter a correct operand.
No.75 |Code U | Message Undefined second operand symbol
Cause Second operand symbol has not bee
defined.
User action | Enter a correct operand.
No.76 |Code U | Message Undefined third operand symbol
Cause Third operand symbol has not been
defined.
User action | Enter a correct operand.
No.78 |Code W [Message Unsuitable for SIMPLEHOST
Cause BR, é AR et. entered when using
the EPA area; no guarantee that this
will operate correctly in the
SIMPLEHOST environment.
User action | Refer to the appendix on the simple
host.
No.79 |Code 1 | Message ROM address overflow, EPA bit on
Cause ROM area is insufficient
User action |Refer to the appendix on program
memory overflow messages.
No.80 |Code P | Message Invalid EXIT statement
Cause EXIT statement entered in other than
IF block. Or, two EXIT statements
entered in IF block.
User action |Delete the EXIT, or, enter a correct
IF block.

1-10-11

NEC

UMAS17K ASSEMBLER
No.81 Code B | Message Boundary error
Cause Address boundary is incorrect.
User action | Alter the lower 4-bits to an address
other than OFH with the DCP
) instruction.
No.82 Code I | Message Illegal character
Cause Characters input are incorrect.
(DCP _instruction)
User action | Input characters permitted by DCP.
No.83 Code F | Message Illegal format
Cause Format is incorrect.
User action | Enter a correct statement.
No.84 Code W | Message May be shortened BR
Cause Branch instruction could be made
shorter.
User action | Refer to the built-in macro SKTn.
No.85 Code P | Message Invalid ENDP statement
Cause ENDP has been described incorrect.
User action | Enter Eorrectly.
No.86 Code I | Message Illegal use of EXTERN
Cause EXTERN has been used incorrect.
User action | Enter correctly.

1-10-12

NEC

UMAS17K ASSEMBLER

List of Error Messages

No. ID Error message
11 0 Illegal first operand type
12 (o] Illegal second operand type
13 (o] Illegal third operand type
14 v Illegal first operand value
15 v Illegal second operand value
16 v Illegal third operand value
17 S Must be comma

18 R Out of address range

19 A Illegal addressing

20 w Unreferenced symbol

21 P No IF statement

22 P No CASE statement

23 P No REPT statement

24 P No IRP statement

25 S Symbol define error

26 A Invalid address

27 P No OPTION statement

28 P No END statement

29 P No ENDIF statement

30 P No ENDCASE statement

31 P No ENDR statement

32 P No ENDM statement

33 P No ENDP statement

34 P No ENDOP statement

35 N Nesting overflow

36 (o} Operand count error

37 S Syntax error

38 M Syntax memory overflow

39 S Symbol area overflow

40 P Invalid EOF statement

41 P Invalid ENDR statement

42 P Invalid EXITR statement

43 P Invalid ENDM statement

44 v Invalid value

1-10-13

NEC

UMAS17K ASSEMBLER

45 T Invalid type

46 B Invalid BANK number

47 R ROM address error

48 0 ORG address error

49 R Used reserved word

50 R No reserved word

51 I Invalid data length

52 N Include nesting error

53 (e} Duplicated OPTION statement

54 M Macro area overflow

55 R REPT area overflow

56 I Invalid OPTION group number

57 S Symbol multi defined

58 S Undefined symbol

59 P Invalid Pseudo

60 M Invalid mnemonic

61 F Include file open error

62 S Parser stack overflow

63 B Bank unmatch

64 w No'EOF statement

65 A Statement after END

66 W Statement after EOF

67 A Address error

68 W Operation in OPTION

69 Cc Invalid CASE LABEL

70 0 Invalid operand

71 (o] Illegal first operand type and value
72 (e} Illegal second operand type and value
73 (o] Iilegal third operand type and value
74 U Undefined first operand symbol
75 u Undefined second operand symbol
76 u Undefined third operand symbol
77 ? Unprintable error

78 1% Unsuitable for SIMPLEHOST

79 1 ROM address overflow, EPA bit on
80 P Invalid EXIT statement

81 B Boundary error

1-10-14

NEC

UMAS17K ASSEMBLER

82
83
84
85
86

H Y9 = Y9 O~

Illegal character
Illegal format

May be shortened BR
Invalid ENDP statement
Illegal use of EXTERN

1-10-15

N E C UMAS17K ASSEMBLER

APPENDIX 1
Error messages generated when program memory overflows

It sometimes occurs during program debugging that the size of the
program overflows thé capacity of the ROM. This is inconvenient as
it dcoes not allow the section which overflows ROM capacity to be
debugged at that time.

One of the uPD17000 series software development tools, the IE-17K
in-circuit emulator uses a target chip program counter for
debugging. However, when permitted ROM capacity is exceeded, (and
the limitation with the chip is little over 2n, the program
counter overflows and control of the program is lost.

To counteract this problem, the IE-17K is provided with an EPA
(extra program address) bit, which permits control of a program
which is up to twice the volume of the target chip ROM. Thus,
even though ROM capacity is exceeded, program debugging is still
possible with the IE-17K.

The AS17K deals with this problem by generating object codes so
that even though the program overflows ROM capacity, it is
possible to address almbst twice the volume of the ROM capacity.
However, if there is a ROM overflow, in reality it is impossible
to get the device to work, and the AS17K outputs error messages as
shown below.

When generating ROM codes, program sizes should be reduced so that
these errors are not output.

1-A-1

UMAS17K ASSEMBLER N E C

The output pattern for error messages generated when program

memory overflows is as shown below

(o]
t
|
() Device ROM area
)
LPMA
® t
ohn
Illegal. area
® EPA area
|
i i
Note: LPMA is last program memory address
[Explanation]

In the above case, the device ROM capacity is not 2n. LPMA

indicates the last address in the ROM. If the program overflows
from @, and extends into the area @, an object code will be
generated, but an error will be generated in respect of statements

®@ and @®.

(1) If the program is in area @

(2)

(3)

An R error (out of address range) will be generated for
statements with addresses coming after LPMA +1.

If the program is in area ®

When linking, the error message "program memory overflow, EPA
bit on" will be output. In addition to this, 1 will be printed
at the start of the statement line (E field) for area @ in the
assemble list. However, if there is an address referenced by a
BR instruction operand in area (), nothing will be printed in
the E field. Further, even though it is in area (), in regard
to the statement referring to the address in the field, 1
will be printed in the E field.

I1f the program overflows area

An R error (ROM address error) will be generated in respect of
each statement. An object code will not be output for
statements in this field.

1-A-2

N E C UMAS17K ASSEMBLER

APPENDIX 2
SIMPLEHOST

The uPD17000 series offers a debugger which operates under a
version of MS-WINDOWST™ called SIMPLEHOST as an IE-17K host
program. This permits the host to carry out break and trace
operations, and memory amendments for object codes generated by
the AS17K. It sends object codes to the IE-17K in real time and
executes them through the SE board.

Although the SIMPLEHOST has commands which are difficult to
remember, it is possible to debug programs with the listing
images. If programs overflow the EPA area, the following
instructions are available but their efficacy is not guaranteed.
(1) A direct designation instruction, using operand at AR

MOVT DBF, @AR
BR @AR etc.

(2) A BR instruction which uses operation expressions in the
operand.

If these are patched into programs in order to use the SIMPLEHOST
for debugging using listing images, the correct addresses are
altered because of the effect of the patch, and it is possible
that discrepancies will be generated between listed addresses and
actual addresses.

The AS17K deals with this by providing a warning if one of the
instructions mentioned above is in a program when it extends to
the EPA area. If the warning "unsuitable for SIMPLEHOST" is
generated when linking, the problem can be handled in the light of
the above points.

MS-WINDOWST™ is a trademark of Microsoft Corporation.

1-A-3

IE-17K

User’s Manual

N E C UM IE-17K

CHAPTER I GENERAL INFORMATION

1.1 Overview

IE-17K is a software development support tool for use with all
uPD17000 series 4-bit single chip micro-computers.

Dedicated SE boards for each product in the series are provided.
SE board, with hardware emulation function specified for each
product, can also be used for program evaluation.

The IE-17K consists of two boards: a memory board and a supervisor
board, and it can be connected with terminals to operate as a
stand alone system. In addition, by connecting to a host machine,
and using Simple Soft as a man-machine interface software, a

powerful debug environment can be created.

2-141

UM IE-17K

NEC

1.2 Characteristics of IE-17K

1.2.1 Interface with target system

The use of object products for target machine interface provides

the same electrical feature as of object products.

1.2.2 Program Memory

The CMOS static RAM on the SE board is used for program memory.

1.2.3 How TO Emulate

Two ways of program emulation can be performed in two ways: in

real time emulation, 1-step emulation.

1.2.4 Break function

(1) Programmable Break function

The

® 0 006

following programmable Break function can be set.

Break when single condition is satisfied.

Setting several conditions (up to four) break selected if

one or all are satisfied.

Setting several conditions (up to four) break selected if

one is satisfied.

Break if conditions are satisfied in the same order as

they set. The following break conditions can be set:

Program memory address

Data memory address

Contents of data memory

Address of register file
Contents of resister file
Command code

Stack level

Status of external terminal (logic analyzer)
Interrupt

DMA

Number of executed instructions

Number of conditions satisfied

2-1-2

NEC

(2) Error detection function

UM IE-17K

A function which issues Breaks and Warnings when a program
accesses a source which is not valid for program

developing the objective product. Faults detected are:
. Invalid memory access

. Invalid system register accessed
. Overflow / underflow in stack level

. Read or test memories to which no data has been
written.

1.2.5 Real time trace function

A function which stores the results of execution in real time,
covers a trace memory size of 32 K steps.

(1) Trace data is as follows.
. Program memory address
. Code of executed instruction
. Skipped instruction
. Written data memory address
. Contents of written data memory
. Status of logic analyzer terminal and relative execution
time of each instruction
(2) On/off condition can be set

1.2.6 Data Memory coverage function
Memorize to which address data memory is written.

Using this function enables you the following information to be
obtained.

. Unwritten bits

. Bits to which "1" is written

. Bits to which "0" is written

. Bits to which both "0" and "1" were written

2-1-3

UM IE-17K N E C

1.2.7 Program memory coverage function

This function memorizes how many times each program address is
executed. Maximum counter values is 255, even if executed more
than 255 time. The counter is incremented when command of its
address is executed without. being skipped or referred with table
reference command (MOVE, etc.). Skipped command causes the counter

to increment.

1.2.8 Programmable pattern generator function

IE-17K contains a programmable a 14 channel pattern generator. The
number of programmable steps is 8 K steps and the cycle time can
be set from 1 us/step to 1333 us/step in increments of about 1
micro second.

1.2.9 Other characteristics

(1) The unit is provided with two RS-232C serial channels: one
channel for the console and one for the PROM programmer.
By connecting channel 0 to a PC-9800 and operating a

PRy T PR

Simple Host as a man-machine inter

face software provides a
powerful debugging environment.

(2) EMI measure was taken to satisfy VCCI standard.

(3) Unit size 21 x 30 x 10 cm (A4 sized).

(4) The unit contains a Switching Regulator enabling it to use
commercial power.

(5) IE-17K has enough space for installing probes.

2-1-4

N E C UM IE-17K

1.3 Configuration

1.3.1 System configuration diagram

Fig. 1-1 IE-17K System Configuration Diagram

SE board 4 : N Target system

Main unit of §
IE-17K :

(]

=

(=]
[}
=
—

PROM programmer

Host machine
(PC-9800)

2-1-5

UM IE-17K N E C

1.3.2 Block diagram

IE-17K consists of a main unit and auxiliary components.
The main unit includes the following components.

. Frame (includes connecfor for connection, switches)
. Integrated power supply

. Supervisor (SV) board

. Memory board

. Mother board

Figure 1-2 IE-17K Block diagram

PN

SE board* \/l > To target system

Logic analyzer
Memory board P
> } Rs-232C

e <
:
-
2
g > Pulse generator
g Supervisor (Connector A)
- board
g & (connector
Q pParallel B, C),
L I/0 port (Connector
D, E**)
’
Power
supply AC 100 V

* SE board is provided for each product type.
** Auxiliary board

2-1-6

N E C UM IE-17K

CHAPTER 2 SPECIFICATION

2.1 Main LSI
<Supervisor board»>

Supervisor CPU uPD70116D x1
Supervisor peripheral upPD71011C x1
Supervisor peripheral uPD71086C x2
Supervisor peripheral uPD71055G %2
Monitor ROM uPD27C512D x2
Monitor ROM uPD41256V x16
Monitor ROM uPD4364G x2

<Memory board>

Memory uPD43256G x15
Memory uPD4364G x1
Memory uPD71059G x1
Memory uPD71054G x2
Memory uPD71051G x2
Memory uPD71082C x2

2.2 Console Interface
RS-232C x 2CH (CHO, CH1)
Baud rate: 110, 300, 600, 1200, 2400, 4800, 9600, 19200 baud
Character length: 7, 8 bits
Stop bit length : 1, 2 bits
Parity : None, Even, 0Odd

2.3 Environment
Operating temperature 10 to 40°c.
Storage temperature -10 to 50°C. (Without condensation)

2.4 Power supply
85 to 132V AC

2.5 Built-in Power Supply

+5 VDC 2.0 A (Max)
+12 VvDC 0.2 A (Max.)

2-2-1

UM IE-17K | N E C

2.6 Power consumption for Each Board

<Memory Board>
+5 VDC 110.0 mA (TYP.)
+12 VDC 32.5 mA (TYP.)

<Supervisor Board>
+5 VDC 1140.0 mA (TYP.)

2.7 External dimension (excluding projection)
Frame 210 x 300 x 100 mm

2-2-2

NEC

UM IE-17K

2.9 Accessories

The following items are supplied with the IE-17K.

(1) Logic Analyzer probe ... 1

(2) PPG Probe ... 1

(3) Power cable ... 1

(4) RS-232C cable ... 1

(5) Miscellaneous
. Operation manual

. Certificate of warranty

eee 1
. Packing list

e 1

2-2-3

N E C UM IE-17K

CHAPTER 3 INSTALLATION

3.1 Removing Memory Board Supervisor

The body of IE-17K consists of two boards. Usually these boards
are not removed. If IC exchange or switch setting requires removal
of these boards, follow this procedure.

(1) Remove the outside panel (remove the screws fixing the panel).
(2) Remove the screws fixing the inner side board to the unit, and
remove the inner board from IE-17K.
(3) In case SE board is mounted on memory board, first, remove
the SE board from the memory board.
(4) Remove any cables connected to the memory/supervisor boards.
(5) Remove the supervisor board via the bottom slot by pulling
the card puller.
(6) Remove memory board via the top slot by pulling the card
puller.

Fig. 3-1 Mounting position of each Boards

-] O
SE board

- Memorg board —

O

- Supervisor board

-l

<Caution of mounting/dismounting boards>
When dismounting the board, dismount the supervisor board first,
and when mounting the board, mount the memory board first.

2-3-1

UM IE-17K

NEC

3.2 Setting Switches
Switches on each board are set as follows.

3.2.1 Setting the switches on Memory Board

Fig. 3-2 Allocation of Memory Board Switches

‘-—————lik{other board connector CNQ————

Jumper switch

Channel 0 Channel 1

JP3

SW2

[888] [

JP4 / SW3
E]
000
DP

N MOD&TERM

1 s —

D P N MOD&TERM

L ot — CN2

The switches on the memory board used for setting RS-232C. JP3 and
SW2 are used for channel 0, and JP4 and SW3 for channel 1. JP3 and
JP4 are used for changing RTS signal. Set these switches according
to the host-machine used. SW2 and SW3 are for changing the
terminal mode and modem mode.

These switches are factory set for shipment as follows:

JP3, JP4 Open
SW2, SW3 Terminal mode

When connecting IE-17K to the PC-9800 series unit with the
supplied RS-232C cable, above setting is available.

2-3-2

N E C UM IE-17K

Fig. 3-4 Connection of Supplied Cables

1 1
2 2
. < .
4 4
5 5
7 7
PC side IE-17K side

2-3-3

UM IE-17K N E C

3.2.2 Setting switches on supervisor board

Fig. 3-5 Location of each switch on Supervisor Board

-——-—-4 Mother board connection CN5 F——————

1
&
8 a Jumper switch
DIP switch

JPI

Reset switch

Moea +ha
uSe uas

the shipping.

2-3-4

UM IE-17K

Fig. 3-6 Setting of DIP switch

OFF ON

———— > Control method

1

Setting

ON

Flow control

OFF

Line control

Parit

bit

2

3

Parity bit setting

ON

ON

0odd

(ZA indicates factory
set switch position)

2-3-5

ON

|OFF

Disable

OFF

ON

Even

OFF

OFF

None

Stop

bit

4

Setting

ON

2 bits

OFF

1 _bits

Character length

S Setting
ON 8 bits

OFF |7 bits
Baud rate

6 7 8 Setting
ON ON ON 19200 BPS
ON ON OFF 9600 BPS
ON OFF | ON 4800 BPS
ON OFF | OFF 2400 BPS
OFF |ON ON 1200 BPS
OFF |ON OFF 600 BPS
OFF |OFF | ON 300 BPS
OFF |OFF | OFF 100 BPS

UM IE-17K N E C

3.3 Connection of connector

3.3.1 Internal connector on memory board

Locations of connectors, CN7, CN8, CN9 on the connection section
between SE Board and memory board, and connector CN5 on the mother
board are shown below.

Fig. 3-7 Locations of connectors (on Memory Board)

— cne H CN2 H cN1 f

2
’ CN9
CN8 2

CIZZRTZAL 45 50
49 50

7 7 7 7 77 7
—rMot/he;: board connector / CN5 l_

Each connector is connected as follows:

CN1 ... Connected to the cable connector stamped "CN1".
CN2 ... Connected to the cable connector stamped '"CN2".

CN6 ... Connected to 15-pin cable connector.
CN7

CN8 Install on SE board.

CN9

CN5 ... Connected to the mother board.

2-3-6

N E C UM IE-17K

3.3.2 Internal connectors on Supervisor Board

Locations of connector on supervisor board is shown as follows.

Fig. 3-8 Locations of connectors (on Supervisor Board)

CN3 CN4_

———‘[Mother board connector CNSF—

Each connector should be connected as follows.
CN3 ... Connected to the 50-pin cable connector.

CN4 ... Connected to the 25-pin cable connector.
CN5 ... Connected to the mother board.

2-3-7

UM IE-17K N E C

3.4 Installing SE board
At the time of shipment, the IE-17K contains memory board and
supervisor board as control boards. The SE board of which specific

to each product, is not installed. Consequently it is required to
install SE board corresponding to each type other than IE-17K in
developing uPD17000 series.

See operation manual for details of each SE board.

The procedure for installing SE Board into IE-17K is as follows.

(1) Remove the top cover of IE-17K by pulling out the fixed ratch
on the top cover.

(2) Remove fixing screws on top inner cover.

(3) Remove the screws attached to the spacer on the memory board.

(4) Connect the connector (male) on the memory board and
connector (female) on the back of SE board. SE board can be
installed by pressing it vertically against the memory board,

Fig. 3-9 Installation of SE board

Connector (female)

Memory board Connector (male)

A
ULV /U /

(5) Secure. SE board and memory board with the screws removed in
step 2.

(6) Replace the top inner cover and the top cover.

2-3-8

N E C UM IE-17K

3.5 Connecting to host machine

An example of using PC-9800 series as a host machine is explained.
Turn off IE-17K and PC-9800 series, connect RS-232C CHANNEL-0
connector on the IE-17K to the standard serial interface (RS-232C)
connector for PC-9800 series, using the RS-232C cable supplied
with the system.

Fig 3-10 Connecting IE-17K with PC-9800 series

/Connect to
h

e -
/\standard
serial
\ interface

(RS-232C)
—)

connector
PC-9800 series (host machine)

/

RS-232C cable

k//’

RS-232C
Shannel

IE-17K main unit

UM IE-17K N E C

3.6 Connecting to PROM Programmer

Connect RS-232C CHANNEL 1 connector to PROM Programmer using RS-
232C cable for PROM Programmer in order to load programs from IE-
17K into PROM Programmer with IE-17K being connected to host
machine (ie. PC-9800 series).

Fig 3-11 Connecting IE-17K with PROM Programmer

serial

interface
(RS-232C)
connector

Supplied RS-232C cable

PC-9800 series (host machine)

RS-232C
%hannel

Q RS-232C
channel 1

IE-17K main unit e ————

PROM Programmer

2-3-10

NEC

3.7 Connecting with target system

UM IE-17K

Connecting the emulation probe to the SE board, linked to a target
system. For the details,

see the instruction manual for each SE
Board.

Fig. 3-12 Connection of IE-17K with target system

standard
serial

connector
RS-232C cable

PC-9800 series (host machine)

Emulation probeﬂ
~~

—~ v RS-232C
0

ZZ
/
|

IE-17K main unit

Receptacle .
Target system

[T

2-3-11

N E C UM IE-17K

CHAPTER 4 ACTIVATION

IE-17K is used by connecting it to a host machine or a terminal
using an RS-232C cable. This chapter describes how to use the IE-
17K when connected to PC-9800 series. Other host machines or
terminals can be operated using the RS-232C. For details, see each
devices User's manual.

Two ways of using IE-17K with PC-9800 series, are available:

One is to use a terminal application such as MS-DOS WINDOW (TM)
TERMINAL.EXE, and the other is to use PC-9800 series in Terminal
Mode as described below. The use of terminal application enables
you to load programs into IE-17K or save programs you corrected
using IE-17K.

When you load save programs using a terminal application like MsS-
DOS WINDOW TERMINAL.EXE, refer to each terminal's User's manual.

4.1 Program Loading
When the IE-17K is used without a terminal program, load HEX form
files created by AS-17K, using the following procedure.

(1) Press the reset button on IE-17K.

(2) Set the serial interface of PC-9800 series. Start MS-DOS (TM)
installed in PC-9800 series, then initialize several interface
by the following procedure.

A>SPEED

SPEED Version X.X

RS232C-0 2400 BITS-7 PARITY-NONE STOP-2 NONE
-RS232C-0 9600 BITS-8 PARITY-NONE STOP-2 XONo
A>

Note 1: Characters underlined to be entered via the keyboard.
Note 2: MS-DOS and MS-WINDOW are trade mark of Micro Soft inc.

2-4-1

UM [E-17K N E C

(3) Load programs using COPYA command in MS-DOS

A>COPYA CON AUX-<
.LP0$$" 23 (~2 means to press Z while pressing
the Control key.)

File has been transferred
A>COPYA file name.HEX AUX4

File transfer completed
A>

(4) Changing DIP switches, enter into Terminal Mode, then press
the Reset switch.

(5) Pressing "$" key twice, confirms IE-17K operation and prompt
appears.

$$
BRK>

If "$3" does not appeared, repeat steps (1) to (5).

For more information concerning SPEED command and COPYA command,
refer to MS-DOS User's Manual.

2-4-2

N E C UM IE-17K

CHAPTER 5 COMMANDS

5.1 Command Notation

5.1.1 Command input form
Commands are input as the following format.

xxx>command$ $
*

* Called as prompt, indicates the operating status of IE-17K.
Prompt consists of three alphabetical characters and ">".
Refer to "Prompt" in Section 5.2.

Enter a command next to prompt, and press [@ key orkey twice.
Pressing key .causes "$" to be echoed back. Consequtive two $$
input after a command means the end of the command, and is called
a "terminator'". when a terminator is input, IE-17K executes the
command.

Separated by delimiter ("$"), multiple commands can be input
successively.

The followings are the input form for this situation.

xxx>command$command$. . .$command$$

5.1.2 Form of command expression

Characters, numerics, and symbols used for commands are defined as
follows.

Character: Only alphanumeric characters can be used, and must be

Uppercase characters. Lowercase characters are not
accepted.

Number : Normally, a number is treated as hexadecimal number.

When you input binary or decimal number, follow the
procedure below.

2-5-1

UM IE-17K N E C

Binary constant:
Expressed by placing ""B" before binary number.
(Example) ~B1010 (Indicates binary 1010)

Decimal constant:
Expressed by placing ""D" before decimal number.
(Example) D324 (Indicates decimal number 324)

Note: "B or "D means to type "B" or "D" while pressing
CTRL (control) key.

Operator : Enables calculation among constants. Operators are
as follows:

4+ ... Addition
- ... Subtraction

... Multiplication
Division
... Logical product (AND)
Logical sum (OR)
... Exclusive OR (XOR)

Negation (NOT)

—-— 3 R N *
. .
. .
. .

¢

Operators has no priority and are evaluated from left
to right. However, if you want to specify a priority to
an operators, use parenthesis.

2-5-2

N E C ‘ UM IE-17K

5.2 Prompt

Prompt indicates the current status of the emulation tip. Prompt
status are shown below.

@ eee> ... At start

@ BRK> ... Break

® RUN> ... Run

@ sSTP> ... Issued STOP command during RUN, and being STOPped

® HLT> ... Issued HALT command during RUN, and being HALT

® DMA> ... Run in DMA mode

@ DSP> ... Break after executing DS command

RES> ... Emulation Chip received reset signal, and being
reset.

[Caution]

(1) at step (D, IE-17K is not yet specified as the product type
to be used, and thus the HEX file (which is a output file from
AS17K Assembler) must be immediately loaded using .LPO or
.LP1. Loading of HEX file enables the system to be operated
as a In-circuit-emulator.

(2) If prompt is changed from "RUN>" to "BRK>", "STP>", or "HLT>",
contents of commands which has been already input are output,
and new commands are accepted.

(3) Once prompt changes from "RUN>" to "STP>", "HLT>", "DMA>", or

"RES>", it will not change back to "RUN>". In this case, when
the next "$$" is input the prompt will change.

2-5-3

UM IE-17K

NEC

5.3 Commands

Symbols used in formats described in this section have the

following meanings.

: Line feed
} : Select one of the contents enclosed in{
] : Input can be omitted.
(bar under) : Means console input.

5.3.1 Program memory control command

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Initialize Program Memory
.IP (Initialize Program Memory)

Change Program memory
.CP (Change Program Memory)

Dump Program memory
.DP (Dump Program Memory)

Find Program memory
.FP (Find Program Memory)

Save Program Memory
.SP (Save Program Memory)

Load Program memory
.LP (Load Program Memory)

Verification of program memory

-VP (Verify Program Memory)

1Ly Frogra

Output of PROM data
.XS (Save PROM Data)

2-5-4

N E C UM IE-17K

.IP Initialization of Program memory

Format : [(a], B8, 7. I P
a : Start address
f : End address
(if ¢.¢ 8, @>B, error)
ro: Daté to be initialized (1-4-3-4-4 bit format).

Function : Replace the contents of address a to g with r.
If a is zero, ‘@ can be omitted.

Example 1: Change the contents of address 10H to 20H into 074?0.

BRK>10,20,074F0.IPS$$

Example 2: Change the contents of address OH to 20H into 120FF.

BRK>,20,120FFoIP$$

255

UM IE-17K N E C

.CP Change Program Memory

Format t(a], CP
a : Program memory address of contents to
be changed.

Function : Changes the contents of program memory address «.
If @ is zero, a can be omitted.

Example : Change the contents of address starting from 100.

BRK>100.CP$$
0100:074F0-120F5 074F0-14001 074F0-11000 074F0-06100

0104:074F0-{ 4 , $$}

If a value of 5-digits 14344 form is input, cursor
moves to the next address. When you end input, enter
n¥" or "$$" without inputting number.

BRK>100.CPS$$
0100:074F0-074F0 074F0-_

T

Press space key.

If space bar is used instead of number input, cursor
will moved to the next address without changing the
contents of the program. If wrong number is input,
pressing "DEL" or "BS" key corrects the wrong input.

2-5-6

NEC

UM IE-17K

0100:120AF-120A1 074F0-120_ Press "DEL" key
{

0100:120AF-120A1 074F0-12_ Press "DEL" key
4

0100:120AF-120A1 074F0-1_ Press "DEL" key
¢

0100:120AF-120A1 074F0-_ Press "DEL" key

0100:120AF-_ Press "DEL" key
v

00FF:120C1 -

Note: _: Cursor

2-5-7

UM IE-17K

NEC

.DP Dump Program Memory

Format : [«][,P)1.DP
e : Start address (a3 8)
B : End address (a > B)

Function : Dump contents of program on addresses a to f.

If address a is zero, it can be omitted. If ",B8" is

omitted, end address become a+g.

Example 1: Dump the contents of addresses 10H to 20H in bit

format of 1-4-3-4-4,

BRK>10.20.DP$$

_0010:874F0 874F0 874F0 874F0 874F0 874F0 874F0 874F0
L,0018:874F0 874F0 874F0 874F0 874F0 874F0 874F0 874F0
_0020:874F0 874F0 874F0 874F0 874F0 874F0 874F0 874F0

Example 2: Dump the contents of addresses OH to 10H.

BRK>,10.DP$$

0000:0C3A0 074F0 0C127 074F0 1D7EQ0 08042 074E0
0008:1D710 1D720 1D730 1D791 1D700 1D710 1D720
0010:1D790

1D704
1D730

Example 3: Dump the contents of addresses beginning with 10H.

(Dump from 10H to 10H + 3FH)

BRK>10.DP$$
0010:1D790 1D7D0 1D7EQ 074F0 074F0 074F0 074F0
0018:1D770 08770 10771 08771 10771 08772 10771
0020:10771 08774 10771 08775 10771 08776 10771
. 0028:10771 08778 10771 08779 10771 0877A 10771
0030:10771 0877C 10771 0877D 10771 0877E 10771
0038:1D000 074F0 074F0 074F0 074F0 074F0 074F0
0040:1D7F0 00000 074F0 074F0 OB7DO 097E0 0C049
0048:0C050 097F2 0C170 09000 0C171 18770 09770

2-5-8

167E0
08773
08777
0877B
0877F
074F0
1C146
0C172

UM IE-17K

.FP Find Program Memory

Function :

Example

Note :

{«l, 8, 1[,8]1.FP
a : Start Address
g : End Address
r : Data to be found
(Bit format of . is 1-4-3-4-4)
§ : Mask data

Find the contents of 7 masked with § in the program
memory address of @ to f. If a is 0, it can be omitted.
If § is omitted, masked data becomes 1F7FF.

Search "12xxx" in address area from 0 to 300H.

BRK>0.300.12000.1F000.FP$$

w0110:12120 , 0120:12200 , ,,0140:12240 _, 0152:12250
L0160:12152 _, ,0180:12152

L

Program memory address data

Masked data is set to 1 for the bits to be searched,

and set to 0 for the bits not to be searched. Bit
format is 1-4-3-4-4.

2-5-9

UM IE-17K N E C

.SP0, .SP1 Save Program Memory

Format : .SPO}
{. sP1
RS-232C Line 0: SPO
Line 1: SP1

Function : Output the contents of program memory to the RS-232C
line specified by .SPO or .SP1. Output format is same
as HEX file format of AS17K.

Example : Output the contents of program memory to the line 1.

BRK>.SP1§$

:1000000063A03CF061273CFOEFE040423CEQOEF04AD
:10001000EF10EF20EF30EF91EF00EF10EF20EF3017
:10002000EF90ESCOESDOESEOE8SF03CA138A538A6B9
:1000300038A738E0E820E8303CF03CF080219030F0
:10004000F7F4601C38E0B204ESEOE8F038A538E0E6
:10005000E830E82038E08031902038E0F6F4605055

2-5-10

N E C UM IE-17K

.LPO .LP1 Load Program Memory

.LP1
RS-232C Line 0: LPO
RS-232C Line 1: LP1

Format : {.LPO]

Function : Input the contents of HEX file AS17K via RS-232C line

specified by .LPO or .LP1., or input program via Line
0.

Example : Input the program via line 0.
@@e>.LPOSS

Note : . At power ON or reset of IE-17K (prompt appears as
"@ee@>"), load HEX file AS17K with .LP command.
. If a program loaded by this command occupies only a
part of the program memory, parts of previous program
will remained in the memory.

. Program coverage will be cleared up.

2-5-11

UM IE-17K

NEC

.VPO .VP1

Verify Program Memory

Format :

Function :

Example :

Note :

.VPO }
. VP1

RS-232C Line 0: VPO
Line 1: VP1

Verify the contents of Program Memory and data in
AS17K's HEX file from RS-232C Line specified by .VPO or

.VP1, If they are identical,

"Verify OK" will be

displayed, if not "Verify NG" will be displayed.

Verify programs input through Line 0.

BRK>.VP0$$
Verify OK

. If data memory information is not identical,
"Verify NG DATA INITIAL VALUE" will appeared.
. If EPA is not identical, "Verify NG EPA" will

appeared.

. If IFL and DFL are not identical, "Verify NG IFL DFL"

will appeared.

2-5-12

NEC

UM IE-17K

.Xs0 .Xs1

Output data for PROM (Save PROM Data)

Format

Function

Example

: |.XS0
.Xs1

Output the contents of program memory to the RS-232C
Line specified by .XS0 or .XS1 with the file format of
AS17K PROM file.

Output the contents of program memory.

BRK>.XS1$$

:1000000063A03CF061273CFOEFE040423CEOEF04AD
:10001000EF10EF20EF30EF91EF00EF10EF20EF3017
:10002000EF90E8COESDOESEOESF03CA138A538A6B9
:1000300038A738E0E820E8303CF03CF080219030F0
:10004000F7F4601C38E0B204ESEOE8F038A538E0ES
:10005000E830E82038E08031902038E0F6F4605055

2-5-13

UM IE-17K N E C

5.3.2 Control command for data memory

(1) Initialization of data memory
.ID (Initialize Data Memory)

(2) Change of data memory
.CD (Change Data Memory)

(3) Dump of data memory
.DD (Dump Data Memory)

(4) Dump of all data memory
.D (Dump All Data Memory

2-5-14

N E C UM IE-17K

.ID Initialize Data Memory

Format : [al, B, 7, ID
a : Start Address
B : End Address
r : Contents

Function : Initialize the contents of the address from a to B with
T.

Example 1: Initialize the contents of the address from OH to 20H
with 0.

BRK>10,20,0.ID$$

Example 2: Initialize the contents of the address from OH to 20H
with 1.

BRK>20,1.IDS$

2-5-15

UM IE-17K 1..[]!23‘::

.CD Change Data Memory

Format : [a].CD

a : Data memory address to be changed

Function : Data memory address to be changed. If « is less than 0,
it can be omitted.

Example : Change the contents of address beginning from 0.

. BRK>.CD
0000 0-0 1-0 2-0 3-0 4-0 5-0 6-0 7-0
0008 8-0 9-0 $$4¢

If data is input, cursor automatically moves to the
next address. To end, just input "|}" or "3" without
numeric input.

. BRK>100.CD

,0100 _3-3 2-_
Bank Press space key

If space key is pressed instead of pressing numeric
key, cursor moves to the next address without
changing data contents.

If numeric input is mistaken, press "DEL" or "BS" key
to correct the data.

2-5-16

NEC

UM IE-17K
0010:2-3 4-5 6-_ Press "DEL" key.
¢
0010:2-3 5-_ Press "DEL" key.
'
0010:3-_ Press "DEL" key.
'
000F:4-
: Cursor

2-5-17

UM IE-17K

NEC

.DD Dump Data Memory]

Format :

Function :

Example 1:

Example 2:

Note H

{«] (,8], DD

«

: Start address (must be agB)

£ : End address (a > fis error)

Dump data memory a to f.
If a is 0, it can be omitted.

Dump data memory from addresses 0 -

®
o
o)
.

BRK>0,80.DD$$

0000:0
0010:0
0020:0
0030:0
0040:

0080:2

(-3
o
wn
(-]
»naeoo

1C

©cocooo0co0ococo
Mwooooo

cocoooco éﬂo

©cocoocoocooco
coocooococoo
©cocoo0ooocoo
©cocoococoococoo
- -N-N-N-W-W-Y
©ocoocoococo
Qocooo0oo0oocoo
Nooooocoo
©cocococo0oocoo
©cocoocooocoo
NOcooocoocoo
©cocococoocoocoo

Dump the contents of data memory at address 30H.

(Data from address 30H to 7FH are dumped.)

BRK>30.DDSS

0030:0 000 00000 0O0O0O0O0O0OO
0040:0 0 0 0 0 000 0O0O0O0OOOO
0050:0 0 000000 00O0O0O0O0CGOO
0060:4 0 8 00000 0O0O0O0O0O0GOSO
0070:5 0 F 0 0000 1 00700CO

-

1f ",B" is omitted, data from address @ to the last
address where a was assigned are dumped. If

the address a of the register file is specified,
the file address a to the last address of the
register file are dumped.

The contents of data memory not installed are
expressed as "-"

To dump address 0080 to OOBF means dumping the
register file. If the register file is not installed,

the status of the inner bus is displayed.

2-5-18

UM [E-17K

NEC

Dump All Data Memory

.D

Format

Function : Dump all data memory

DSS

BRK>,

Example

ocoooo0co0o0o0
cocococoo0o0U
mooooooo
ococococo0o0o0o
coocoo0cocon
ocoocooo0o0o0o
coooco0oo000
cococoo0co00~

Oo0oO0O0OO0OO0OO0OOC
O0oO0O0OO0O0OO0OO
ooooo.ooo
WOOO0OO0OO0OO0OO
Vooooooo
~ 00000 ™M

cocoo0o00O0 ww

0000
0010
0020
0030
0040
0050
0060
0070

The register file is also dumped.

Note

2-5-19

UM IE-17K

NEC

5.3.3 Emulation command

(1) Reset
.R (Reset)

(2) Program run
+RN (Run)

(3) Program run (Reset condition)
.BG (Run Beginning Condition)

(4) Break
.BK (Break)

(5) Change start address of program
.CA (Change Start Address)

(6) Step operation

S (Sten)
\step)

(7) Display
.DS (Display)

2-5-20

N E C UM IE-17K

.R Reset

Format ¢ .R
Function : Reset the SE board
BRK>.R$$
Note ¢ . The contents of the register file or the data memory

become same as that of the reset condition of the
target products.

. The contents of data coverage will be cleared.
. Run start address becomes address OH.

2-5-21

UM IE-17K N E C

RN Program Run (RUN)

Format : .RN
Function : The condition used for break trace is not changed. A
program is started from the currently specified run

start address.

Example : BRK>_.RN$$
RUN>

_:Cursor

2-5-22

NEC

UM IE-17K
.BG Run Beginning Condition
Format : .BG
Function : A program is started from the currently specified
execution address and the condition used for break
trace is reset.
<Contents to be reset>
. Counter value used for Level 1 (reset value is 0)
. Sequential stack initial value used for Level 2 (for
initial value)
. Break trace table (for initial value)
. Specification of Trace on, One shot, or Trace off
(for any Trace condition)
. Level 1 condition
Example : BRK>.BGS$$

RUN>_

_:Cursor

2-5-23

UM IE-17K N E C

.BK Break

Format : .BK

Function : Stops program execution. When this instruction is
executed, the contents of the system register and
general purpose register are displayed.

This command can be accepted in the break state.

Example :
RUN>.BK$$
ADDR INSTRUCTION
0002 074F0 BREAK ... Instruction which processed break
0003 074F0 OVERRUN ... Most recently executed instruction

0004 0C004 NEXT ... Next instruction to be executed
PC SP AR WR BR MP IX
0004 3 0700 0 O ... 000 System registers
PSW: DB CP CY 2 IXE MPE JG

0 0 0 0 0 0 0

RP 0123456789ABCDEF
000 0000000000000320 ... General-purpose registers

2-5-24

NEC

.Ca

UM IE-17K

Change program start address

Format : [a].CA

a: Execution start address

Function :

Changes the program execution start address.
If @ is 0, @ can be omitted.

Example : BRK>100.CAS$S

2-5-25

UM IE-17K N E C

.S Step operation (Step)

Format : [@].S
a: Specifies number of executions.

Function : Executes program for the specified number of times.
If ¢« is set to 0 or not specified, single-step
instruction execution will be performed.

Example 1: To execute single-step operation:
BRK>.S$$
ER RP PC INSTRUCTION
0 00 0001 074F0 Each step is executed when the
0 00 0002 074F0 space key is pressed.
0 00 0003 0cCO000 1
0 00 0000 074F0 $$

Example 2: To execute 4-step operation:
BRK>4.S$$%
BR RP PC INSTRUCTION
00 0001 074F0 4 steps are executed when the
00 0002 074F0 space key is pressed.
00 0003 0C000
00 0000 074F0

Instruction code

© o o o

Program counter
Register pointer
Bank

Note : Step operation will be terminated when $$ or [}]

(carriage return) is input.

2-5-26

NEC

UM IE-17K
.DS Display

Format ¢ .Ds

Function : Enables LCD display during break execution. This
command is used to display the contents on the LCD.
For some products currently under developed, contents
displayed on the LCD disappear during break.

Example : BRK>.DS$$
DSP>

Note : o0 Since emulation is in RUN state (the .BR instruction

is repeatedly executed) and the contents of trace or
coverage are not guaranteed after this command
execution.

o The break state can be resumed by pressing any key.

2-5-27

UM IE-17K N E C

5.3.4 Break/trace condition control commands

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Change break/trace condition

CC (Change break/trace condition)
Change trace ON/OFF condition

CT (Change trace ON/OFF condition)
Dump break/trace condition

DC (Dump break/trace condition)
Dump trace table

DT (Dump trace table)

Save break/trace condition

SC (Save break/trace condition)
Load break/trace condition

LC (Load break/trace condition)
Verify break/trace condition

VC (Verify break/trace condition)

2-5-28

N E C UM IE-17K

.CC Change break/trace condition (Change Break/Trace
Condition

Format : .CC

Function : Sets/changes break/trace condition.

Description:

Four break/trace conditions can be independently set, using the
select unit. There are four select units. When setting any item in
any of these four units, level 1 of the .CC command should be
used. When setting each of these four units as break condition,
level 2 of the .CC command should be used. When setting each of
these four units as trace condition, the .CT command should be
used.

To set the .CC command, conditions are set in the interactive
mode.

The following describes each of these setting iﬁems. For items C-
L, a carriage return is used to enter the default value for the
item. $ is used to exit from the setting mode.

<Break condition set item (for level 1)>
A) LEVEL (1, 2): 2 1

... Selects level. Two levels , level 1 and level 2 are
available.

B) UNIT (0 - 3): 2
... Selects unit. Units are 0 to 3.
h +

CATG (C. - L): ?
... Selects condition from set items C) to L).

Some units do not have this selection. If an item which is
selected, is not available the next available item will be
selected.

2-5-29

UM IE-17K N E C

C) CONDITION AND(1)/OR(0): Default?
... Selects whether sets items D) to K) will ANDed or ORed.
When AND is selected, the break condition will be

established when all set items in a given unit are
satisfied. Therefore, if it is necessary to eliminate any
condition from ANDed conditions, the condition should be
set in a manner it is always satisfied.

For E) and I), the timing signal is concerned with
establishing the condition, if it is necessary to remove
any item, specify 1 for RELEASE -- FROM AND ---.

D) PROG ADDR UPPER: Default?

... Specifies the top address of the break/trace range of the
program.

PROG_ADDR LOWER: Default?

... Specifies the bottom address of the break/trace range of
the program.

MATCH(1)/UNMATCH(0): Default?

«.. When MATCH is specified, the program address range
specified in the above will become a break/trace
condition.

... When UNMATCH is specified, the addresses outside the

program address range specified in the above will become
a break/trace condition.

E) RELEASE DATAMEMORY FROM AND YES(1)/NO(0): Default?
.+« When removing item E) which is related to the data memory
from ANDed condition of D) to K) (when 1 is selected in
(C)), input 1. If ORed condition of D) to K) (when 0 is

selected in (C)), the content of this setting is ignored so
that it can be left either as 1 or 0.

For conditions relating to the data memory, these three
conditions are ANDed; DATA ADDR, CURRENT DATA, and PREVIOUS
DATA (excluded on some units).

2-5-30

N E C UM [E-17K

DATA ADDR: Default?

... Specifies a beak/trace condition with the data memory
address so that a beak/trace occurs when data is written to
the specified address.

DATA ADDR MASK: Default?

... Specifies mask data for the data memory address specified
as a break/trace condition. The mask data is hexadecimal
where 1 is set for the data memory address to be used as
the break/trace condition and 0 is set to the bit which can
be either 1 or 0.

Since this item is not provided for on unit 2, a data
memory break/trace condition for unit 2 cannot be
invalidated.

MATCH(1) /UNMATCH(0): Default?

..+ When MATCH is specified, the DATA ADDR value will become a
break/trace condition.

... When UNMATCH is specified, values other than the DATA ADDR
value will become a break/trace condition.

CURRENT DATA: Default?
... Specifies the break/trace condition with the value written
to the data memory.

CURRENT MASK: Default?
... Specifies the mask data for the data memory value used as
the break/trace condition.

Since this item is not provided for unit on 2, a data
memory break/trace condition for unit 2 cannot be
invalidated.

MATCH(1)/UNMATCH(0): Default?
... When MATCH is specified, the CURRENT DATA value specified
in the above will become a break/trace condition.

... When UNMATCH is specified, values other than the CURRENT
DATA value specified in the above will become a break/trace
condition.

2-5-31

UM IE-17K N E C

F)

G)

PREVIOUS DATA DISABLE YES(1)/NO(0): Default?

... DATA ADDR, CURRENT DATA, and PREVIOUS DATA conditions are
ANDed as a break/trace condition. Therefore, to exclude
PREVIOUS DATA condition from item E), specify 1.

PREVIOUS DATA: Default?
... Specifies a break/trace condition with the value of the
data memory before data is written to memory.

MATCH(1)/UNMATCH(0): Default?

... When MATCH is specified, the PREVIOUS DATA value described
in the above will become a break/trace condition.

... When UNMATCH is specified, values other than the PREVIOUS
DATA value described in the above will become a break/trace
condition.

SP_LEVEL UPPER: Default?

... Specifies the top of the break/trace range in the stack
pointer.

SP_LEVEL LOWER: Default?

... Specifies the bottom of the break/trace range in the stack
pointer.

MATCH(1)/UNMATCH(0): Default?

... When MATCH is specified, the stack pointer range described
above will become a break/trace condition.

... When UNMATCH is specified, outside the stack pointer range
described above will become a break/trace condition.

INST CODE: Default?

... Specifies a break/trace condition with the instruction code
to be executed. The instruction code format is a 1-4-3-4-4-
bit format.

INST MASK: Default?
... Specifies the mask data for the instruction code which will
be used as a break/trace condition.

2-5-32

N E C UM IE-17K

H)

MATCH(1)/UNMATCH(O0): Default?

... When MATCH is specified, the instruction code specified
above will become a break/trace condition.

... When UNMATCH is specified, codes other than the instruction
code specified above will become a break/trace condition.

PORT DATA: Default?

... Specifies a break/trace condition with the value input from
the logic analyzer probe connected to connector A.
The unit's pins and the logic analyzer's probe pins are
as follows:

UNIT Logic analyzer probe pin
0 — STO
1 — sTM
2 ——— ST2
3

— ST3

PORT MASK: Default?

... Specifies the mask data for the port data which will be
used as a break/trace condition.

EDGE(1)/LEVEL(0): Default?

... When 0 is specified for PORT DATA, the falling edge becomes
a break/trace condition if EDGE is specified. If LEVEL is
specified, a low level (pin level) becomes a break/trace
condition.

When 1 is specified for PORT DATA, the rising edge becomes
a break/trace condition if EDGE is specified. If LEVEL is

specified, a high level (pin level) becomes a break/trace
condition.

MATCH(1)/UNMATCH(0): Default?

... When MATCH is specified, the PORT DATA status specified in
the above will become a break/trace condition.

... When UNMATCH is specified, status other than the PORT DATA
status specified above will become a break/trace condition.

2-5-33

UM IE-17K N E C

XREQ DATA: Default?
... Specifies a break/trace condition with the value input from

the XREQ pin of the logic analyzer probe.
The XREQ pin of the logic analyzer probe is exclusively
used for inputting the external break signal.

XREQ MASK: Default?
... Specifies the mask data for the XREQ data which will be
used as a break/trace condition.

EDGE(1)/LEVEL(0): Default?

... When 0 is specified for XREQ DATA, the falling edge becomes
a break/trace condition if EDGE is specified. If LEVEL is
specified, a low level (pin level) becomes a break/trace
condition.

When 1 is specified for XREQ DATA, the rising edge becomes
a break/trace condition if EDGE is specified. If LEVEL is
specified, a high level (pin level) becomes a break/trace

P R P
CONiGivilne.

MATCH (1) /UNMATCH(0): Default?

... When MATCH is specified, the XREQ DATA status specified in
the above will become a break/trace condition. »

... When UNMATCH is specified, status other than the XREQ DATA
status specified above will become a break/trace condition.

For this item, the break/trace condition with the PORT DATA

and the break/trace condition with the XREQ data are ORed.

I) This item is not currently supported. Therefore, the
break/trace condition for this item must be invalidated in the
following manner.

RELEASE MAR FROM AND YES(1) / NO(0) : 0 2 1
MAR DATA : 020
MAR MASK : 021
MATCH(1) / UNMATCH(O) : 0 ? 0

2-5-34

N E C UM IE-17K

J)

INTERRUPT ACKNOWLEDGE: Default?

K)

... Specifies a break/trace condition with an interrupt
generation. When 1 is specified, the break/trace condition
will be satisfied when an interrupt is generated during
program execution.

The break/trace start address for interrupt generation is
the corresponding vector address.

INTERRUPT MASK: Default?

... Specifies the mask data for the value specified for the
interrupt used as a break/trace condition.

MATCH(1)/UNMATCH(0): Default?

... When MATCH is specified, the value specified for the above
interrupt will become a break/trace condition.

... When UNMATCH is specified, values other than the value
specified for the above interrupt will become a break/trace
condition.

DMA: Default?

... Specifies a break/trace condition with a generation of DMA
(Direct Memory Access).
Specify 1 to satisfy the break/trace condition when DMA is
generated.
Specify 0 to satisfy the break/trace condition when DMA is
not generated.
It must be noted that no break will be generated when DMA is
performed.

DMA MASK: Default?

... Specifies the mask data for the value specified for the
DMA used as a break/trace condition.

MATCH(1)/UNMATCH(O0): Default?

... When MATCH is specified, the value specified for the above
DMA will become a break condition.

... When UNMATCH is specified, values other than the value
specified for the above DMA will become a break condition.

2-5-35

UM IE-17K N E C

L) COUNTER SOURCE SELECT
NO(0)/INST(1)/CONDITION(2)/INST AFTER CONDITION(3): 02
... Specifies a break/trace condition with counter overflow.

The counter is an up-counter which increments (+1) its

contents from initial value O.

The counter can be set in the following four ways:

. NO(O) «eveve... The counter will not be used.

. INST(1) ceeeene Unconditionally counts the number of
instruction executions.

. CONDITION(2) .. Counts the number of executions of
instructions which satisfy the break
condition of the unit specified in C-K.

. INST AFTER CONDITION(3)

... Counts the number of instructions

executed after the conditions of items C)
to K) are satisfied.

TERMINAL COUNTER: Default?
3 W

AAAAA +
& councer en

COUNTER MASK: Default?

... Specifies the mask data value for the value specified for a
counter used as a break/trace condition.

MATCH(1)/UNMATCH(0): Default?

... When MATCH is specified, the counter value specified above
will become a break condition.

... When UNMATCH is specified, values other than the counter
value specified above will become a break condition.

2-5-36

N E C UM IE-17K

(Output example of each unit)
<Unit 0>

BRK > ,CCS$$
A) LEVEL (1, 2)
B) UNIT (0 - 3) :
CATG (C - L) :
C) CONDITION AND(1) / OR(0) :
D) PROG ADDR UPER : FFFF
PROG ADDR LOWER : 0000
MATCH (1) / UNMATCH(0) : 0 ?
E) RELEASE DATAMEMORY FROM AND YES (1) / NO(0) : 0 ?
DATA ADDR : 000 2
DATA ADDR MASK : 000 ?
CURRENT DATA : ?
CURRENT MASK : ?
MATCH (1) / UNMATCH (0)
F) SP LEVEL UPER
SP LEVEL LOWER
MATCH (1) / UNMATCH (0)
H) PORT DATA
PORT MASK
EDGE (1) / LEVEL(0) :
MATCH (1) / UNMATCH(0) :
XREQ DATA :
XREQ MASK :
EDGE (1) / LEVEL(O0)
MATCH (1) / UNMATCH (0)
INTERRUPT ACKNOWLEDGE
INTERRUPT MASK
MATCH (1) / UNMATCH (0)
K) DMA
DMA MASK
MATCH (1) / UNMATCH (0)
L) COUNTER SOURCE SELECT
NO(0) / INST(1l) / CONDITION(2) / INST AFTER CONDITION(3) : 0 ?

RSN

“
pnbi-'

FORPRIPK]

} Program memory

Data memory

o

PRRR R

Stack pointer

ERRECEPRY

Logic analyzer probe STO0 pin

-

Logic analyzer probe XREQ pin

I

Interrupt

0 0)) WD W))))

OO OO0 OO QOO0 O0ODO0DODO0ODOOCDOOO
g

e e I

oW

TERMINAL COUNTER : 0000 2 Counter
COUNTER MASK : 0000 2
MATCH (1) / UNMATCH(0) : 0 ?

2-5-37

UM IE-17K

NEC

<Unit 1>

.CC$$

A) LEVEL (1, 2)

B) UNIT (0 - 3)
CATG (C - L)

C) CONDITION AND (1) / OR(O)

D) PROG ADDR UPER
PROG ADDR LOWER
MATCH (1) / UNMATCH(0)

w o) W
nke

: 0

: FFFF ?
: 0000 2 Program memory
: 002

E) RELEASE DATAMEMORY FROM AND YES(1l) / NO(0) : 0 ?

DATA ADDR

DATA ADDR MASK
CURRENT DATA

CURRENT MASK

MATCH (1) / UNMATCH(0)

: 000 2

: 000 2

: 072

: 02 Data memory
:07?

PREVIOUS DATA DISABLE YES(1) / NO(0) : 0 ?

PREVIOUS DATA
MATCH(1) / UNMATCH (1)
PORT DATA

PORT MASK

EDGE (1) / LEVEL(0)
MATCH (1) / UNMATCH(0)

H

-~

0
: 0
H]
0
0

: 0?

Logic analyzer probe ST1 pin

W W W

I)RELEASE MAR FROM AND YES(1l) / NO(0) : ?

MAR DATA
MAR MASK
MATCH (1) / UNMATCH (0)

L) COUNTER SOURCE SELECT

: 02
: 0?2 MAR*
0 2

P

NO(0) / INST(1l) / CONDITION(2) / INST AFTER CONDITION(3) : 0 ?

TERMINAL COUNTER
COUNTER MASK
MATCH (1) / UNMATCH (0)

* Not currently supported.

: 00 2
: 00?2
0 ?

Counter

2-5-38

NEC

UM IE-17K

<Unit 2>

Level 1, Unit 2

BRK > .CCS$

A) LEVEL (1, 2) 21

B) UNIT (0 - 3) ?2 2
CATG (C - L) 2 C

C) CONDITION AND(1l) / OR(O) : 0

D) PROG ADDR UPER : E‘E‘FE‘ ?
PROG ADDR LOWER : 0000 ? Program memory
MATCH (1) / UNMATCH(0) : 0 ?

E) RELEASE DATAMEMORY FROM AND YES(1) / NO(0) : 0 ?

DATA ADDR : 000 ?
MATCH(1) / UNMATCH(1) : 0 ? Data memory
CURRENT DATA 10 ?
MATCH (1) / UNMATCH(0) 02

H) PORT DATA : 02
PORT MASK : 02 . .

Logic analyzer probe ST2 pin

EDGE (1) / LEVEL(0) 0 2 g o P P
MATCH (1) / UNMATCH(0) 02

L) COUNTER SOURCE SELECT
NO(0) / INST(1l) / CONDITION(2) / INST AFTER CONDITION(3) : 0 ?
TERMINAL COUNTER : 00 2 Counter
COUNTER MASK : 00 2

MATCH(1) / UNMATCH(0) : 0

?

J

2-5-39

UM IE-17K N E C

<Unit 3>

BRK>.CCS$$

A) LEVEL(1 , 2) 71

B) UNIT (0 - 3) 73
CATG (C - L) : 2 C

C) CONDITION AND(1) / OR(O) : 0 ?

D) PROG ADDR UPER : FFFF ?
PROG ADDR LOWER ¢ 0000 ? Program memory
MATCH(1) / UNMATCH(O0) : 0 ?

G) INST CODE : 00000 ?
INST MASK : 00000 ? }Instruction code
MATCH(1) / UNMATCH(O0) : 0 ?

H) PORT DATA 0 ?
PORT MASK 2 00? ' Logic analyzer probe ST3 pin
EDGE(1) / LEVEL(0) 07
MATCH(1) / UNMATCH(O0) : 0 ?

2-5-40

N E C UM IE-17K

<Break condition set item (level 2)>

When setting each unit (units 0 to 3) specified in level 1 as the
break condition, level 2 is used.

This setting is made in four hierarchical levels using a concept
called DEPTH.

OR condition for four units can be set in one DEPTH. A unit for
which 1 is specified will be included in the OR condition. A unit
for which 0 is specified will be excluded from the OR condition.
When the OR condition in one DEPTH is satisfied, the satisfaction
of the next DEPTH will be awaited.

A break occurs when the condition for DEPTHO is satisfied.
Satisfaction of condition is awaited in this order; DEPTH3 ->
DEPTH1.

The DEPTH from which satisfaction of condition will be awaited can
be set by INITIAL DEPTH setting.

Example:

BRK>.CC$$

A) LEVEL.(1 , 2) : 2?2 2

B) LEVEL 2 : 0123
DEPTH-3 : 1101 2 0000
DEPTH-2 : 1101 2 1111
DEPTH-1 : 1101 2 1010
DEPTH-0 : 1101 2 0001

INITIAL DEPTH : 0 2 1

This setting generates a break when the condition of unit 3
specified in level 1 is satisfied after the condition of unit 0 or
2 specified in level 1 is satisfied.

2-5-41

UM IE-17K

NEC

Table 5-1 List of Break/Trace Conditions

ITEM

UNITO

UNIT1 | UNIT2 [UNIT3 |

{'C) CONDITION AND(1) / OR(0)

o

o

) ! o

D) PROG ADDR UPER
PROG ADDR LOWER
MATCH (1 UNMATCH(O

o

o

o o

E) RELEASE DATAMEMORY FROM AND
YES(1) / NO(0)
DATA ADDR

MATCH(1) / UNMATCH(O)
CURRENT DATA

PREVIOUS DATA DISABLE
YES(1) / NO(O)
PREVIOUS DATA

MATCH(1) / UNMATCH(O)

(o]

F) SP LEVEL UPER
SP LEVEL LOWER
MATCH(1) / UNMATCH(O0)

[[G) INST CODE
INST MASK
MATCH(1) / UNMATCH(O)

H) PORT DATA
PORT MASK
EDGE(1) / LEVEL(O)
MATCH(1) / UNMATCH(O0)

XREQ DATA

XREQ MASK

EDGE(1) / LEVEL(0)
MATCH(1) / UNMATCH(O)

J) INTERRUPT ACKNOWLEDGE
INTERRUPT MASK
MATCH(1) / UNMATCH(O)

K) DMA
DMA MASK
MATCH(1 UNMATCH (O

L) COUNTER SOURCE SELECT
NO(0) / INST(1) / CONDITION(2)
/ INST AFTER CONDITION(3)
TERMINAL COUNTER
COUNTER MASK

MATCH(1) / UNMATCH(O)

2-5-42

N E C UM IE-17K

.CT Change trace ON/OFF condition

Format ¢ .CT

Function : Changes the trace ON/OFF condition.

Description:

Sets each unit specified in level 1 of .CC as the trace condition.
The trace ON/OFF condition is set in the following manner.

BRK>.CTSS
TRACK CONDITION MODE
D: TRACE DON'T CARE ..coveeo. (1)
T: TRACE ON cereseaas (2)
U: TRACE OFF creceneas (3)
S: TRACE ONE SHOT ceceenas. (4)
LEVEL 1 UNIT : 0123
DDDD ?

—

Default

(1) Satisfaction of the break condition of the unit has no
effect on trace.

(2) Trace starts (ON) when the break condition of the unit is
satisfied.

(3) Trace ends (OFF) when the break condition of the unit is
satisfied.

(4) Trace will be performed only in the portion for which the
break condition of the unit is satisfied (trace one shot).

Note : If the trace conditions of two or more units are
satisfied at the same location, the following priority

.order is used to validate the trace condition.

TRACE ON > TRACE ONE SHOT > TRACE OFF

2-5-43

UM IE-17K N E C

Example

BRK>.CT$$

TRACK CONDITION MODE
D: TRACE DON'T CARE
T: TRACE ON
U: TRACE OFF
S: TRACE ONE SHOT
LEVEL 1 UNIT : 0123

: DDDD ? TUSS

Trace starts when the condition for unit 0 is satisfied.

Trace ends when the condition for unit 1 is satisfied.

Trace is performed while the condition for unit 2 or 3 is

satisfied.

Note: .

-

There are two types of trace, address trace and status
trace. Address trace is performed regardless of the
setting of this command.

Trace ON is assumed when the execution is made after
inputting .R or the execution is started with .BG.

The contents set by .CT is not affected when the execution
is made after inputting .R or the execution is started
with .BG.

After trace ON or trace OFF, trace ON or trace OFF will be
maintained even if TRACE DON'T CARE is set.

TRACE ONE SHOT is effective only in the trace OFF state.
If TRACE ONE SHOT is specified in the trace OFF state,
trace will be performed only for the address for which the

condition is satisfied. Additionally, setting TRACE DON'T
CARE after specifying TRACE ONE SHOT will not maintain the
TRACE ONE SHOT specification, but will maintains the trace
OFF status existing before specifying TRACE ONE SHOT.

When trace OFF is specified, afterwards, no trace will be
executed; however, the execution address which determines
trace OFF will be executed (this is similar to when TRACE
ONE SHOT is specified).

2-5-44

N E C UM IE-17K

Example 1: When trace OFF state continues after trace OFF has
been initiated at address 5H for unit 0.

Program execution address Trace address
0 0
1 1
2 2
3 3
4 4
LS 5] —
6
7 Trace OFF state
8
1 1
2 2
3 3
4 4
LS [— Will be traced
6 ,

Example 2: When, after trace OFF state is initiated at address 5H
for unit 0, TRACE DON'T CARE is specified at the same
address (5H).

Program execution address Trace address

e Wi - O

] ———

Trace OFF state
Specify TRACE DON'T CARE at address SH|for unit 0

Vb wN =

¢mm——t—— Will not be
traced

v O VN WN =0 OJdONIBWN O

2-5-45

UM IE-17K

NEC

Table 5-2

Transition of Trace State

Current trace| During During During trace
Satisfied state| trace ON trace OFF ONE SHOT
condition
Trace ON Continues Starts trace | Starts trace
trace
Trace OFF Ends trace | Maintains Ends trace ONE
trace OFF SHOT
Trace ONE SHOT Continues Starts trace | Continues
trace (ONE | ONE SHOT trace ONE SHOT
SHOT is (most recent
invalid) condition is

valid)

2-5-46

NEC

UM IE-17K

.DC Dump break / trace consitions (Dump Break Condition)
Format : .DC
Function : Dumps the brak / trace consitions.
Example : To dump the break / trace conditions of untis 0 to 3:
BRK > .DC$$
UNIT (0 - 3) 2 0
CONDITION : OR
PROG ADDR : FFFF - 0000 UNMATCH
DATA ADDR : 000 <000> UNMATCH
CRNT : 0 <0> UNMATCH
SP LEVEL : F - 0 UNMATCH
PORT DATA : 0 <0> LEVEL UNMATCH XREQ : 0 <1> LEVEL UNMATCH
INTERRUPT : 0 <0> UNMATCH
DMA 0 <0> UNMATCH
COUNT SEL : NO 0000 <0000> UNMATCH
TRACE SEL : TRACE ON
BRK > .DC$$
UNIT (0 - 3) 2?2 1
CONDITION : OR
PROG ADDR : FFFF - 0000 UNMATCH
DATA ADDR : 000 <000> UNMATCH
CRNT : 0 <0> UNMATCH
PRVS : 0 UNMATCH
PORT DATA 0 <0> LEVEL UNMATCH
MAR DATA 0 <0> UNMATCH
COUNT SEL NO 00 <00> UNMATCH
TRACE SEL TRACE OFF
BRK > .DC$$
UNIT (0 - 3) 2 2
CONDITION : OR
PROG ADDR FFFF - 0000 UNMATCH
DATA ADDR 000 <000> UNMATCH
CRNT : 0 <0> UNMATCH
PORT DATA 0 <0> LEVEL UNMATCH
COUNT SEL NO 00 <00> UNMATCH
TRACE SEL TRACE DON'T CARE
BRK > .DC$$
UNIT (0 - 3) 2 3
CONDITION : OR
PROG ADDR FFFF - 0000 UNMATCH
INST CODE 0000 <0000> UNMATCH
PORT DATA 0 <0> LEVEL UNMATCH
TRACE SEL TRACE DON'T CARE
Note: Contents of < > are mask data.

2-5-47

UM IE-17K N E C

.DT Dump trace table

Format : [a,8].DT
a: Dump start trace number a<p
f: Dump end trace number a>f will result in error

Function : Dumps the trace contents from the specified trace start
number @ to the specified trace end number.

Description:

If both @ and f are not specified, the last contents of the trace
table will be displayed. When the system resets or the .R command
is input, the trace table will be initialized and the trace
counter will be initialized to O.

For a trace with fewer than 32K steps (32768 in decimal), the
trace counter indicates the end of the trace table.

For a trace which exceeds 32K steps, the most recent 32k steps of
the trace contents will be stored in the trace table, and the
trace counter will indicate 7FFFH (32767).

There are two types of trace, the address trace and the status
trace.

For the address trace, the most recent program execution contents
will be traced regardless of the trace condition.

For the status trace, the range specified by the trace condition
will be traced (the status trace will contain more informations
than the address trace).

Example 1: To dump the result of the address trace from trace
number 0 to trace number 10:

BRK>0.10.DTS$S
ADDRESS (1) / STATUS (0) TRACE ? 14

TR_NO ADDR INSTRUCTION
00000 0000 0000 074F0
00001 0001 0001 074F0
00002 0002 0002 074F0
00003 0003 0003 074F0
00004 0004 0004 074F0
00005 0005 0005 074F0

2-5-48

NEC

UM IE-17K

Example 2:

00006
00007
00008
00009
00010
(1)

0006
0007
0008
0009
000a

(2)

To dump the

number

BRK>0.10.DTS
ADDRESS (1) / STATUS (0) TRACE ? 0 L

TR_NO
00000
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016

(1)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
009D
000E
000F
0010

(2)

ADDR
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010

(3)

0 to

0006 074F0
0007 074F0
0008 074F0
0009 074F0
000A 074F0
(3) - (4)

result of the status trace from trace

trace number 10:

INSTRUCTION PORT

074F0
074F0
074F0
074F0
074F0
074F0
074F0
074F0
074FQ
074F0
074F0
074F0
074F0
074F0
074F0
074F0
074F0

(4)

1Mn
11111111
11111111
1
11
1
1M
1

111111
11111111
1111111
11111111
11111111
11111111
11111111
11111111
1111111
11111111

(S)

(1) Trace number displayed in decimal

wa
04F
04F
04F
04F
04F
04F
04F
04F
04F
04F
04F
04F
04F
04F
04F
04F
04F

(6)

(2) Trace number displayed in hexadecimal

(3) Program address (program counter value)
(4) Instruction code (1-4-3-4-4-bit format)

[eNoNeNoRoNoNoNoloNoNoNeNoNoNoNo o Not]

—_
~
~

[efoNoNoNoNeoNoNoNeNoNoloNoNoNoNoNoNn)

(5) Status of each pin of the logic analyzer probe.
From right, each digit represents STO, ST1,
(6) Data memory write address

s e ey

TIME
0130001
0130002
0130003
0130004
0130005
0130006
0130007
0130008
0130009
013000A
013000B
013000C
013000D
013000E
013000F
0130010
0130011

(9)

ST7.

Effective only when data is written to the data memory.
(7) Data bus
Indicates the value of data written to the data memory.
(8) Instruction skipped when the skip instruction is executed is
indicated by an asterisk (¥*).

2-5-49

UM IE-17K N E C

(9) Time stamp

This is set to 1 when the .RN command is executed, and
incremented (+1) each time an instruction is executed.
However, when the MOV instruction is executed, this value
will be incremented by 2 (+2).

2-5-50

N E C UM IE-17K

.SCO0 .SC1 save break/trace condition

Format : (.SCO
{.sm

RS-232C cChannel 0: VPO
Channel 1: VP1

Function : Outputs the break/trace condition specified by level 1
of .CC to the RS-232C channel specified by .SCO or .SCi
in the Intel-HEX format..

Example : To output the break/trace condition to channel 0:

BRK>.SC0SS
:104143000BOBOBOB00FF020202000000000001003A
:1041530000010100000000FFFF0000100000FF0746
:104163000B000F0400000F00040000FFFF0000011C
©104173000001000F0000010100010100000000FF29
:10418300FF000010000000FFFF0000100000FF0709
:104193000B000F0400040F00000000FFFF000001EC
:1041A3000001000F0400010000010000000000FFF7
:1041B300FF000008000000FFFF0000100000FFO07E1
:1041C3000B000F0400000F00000000FFFF000001C0
:1041D3000001000F0000010000010000000000FFCB
:1041E300FF000008000000FFFF0000100000FF07B1
:1041F30000000F0000000F00000000FFFF1000018F
:104203000001000F0000010000010000000000FF9A
:07421300FF000000000000A5

:00000001FF

2-5-51

UM IE-17K N E C

.LCO0 .LC1 Load break/trace condition

Format : .LCO}
{.LC'I

RS-232C Channel 0: LCO
Channel 1: LC1

Function : Inputs the break/trace condition output by .SCO or .SC!
from the RS-232C channel specified by .LCO or .LC1.

Example : To input the break/trace condition from channel 0:
BRK>.LCOS$$

2-5-52

N E C UM IE-17K

.VCO0 .vC1 Verify break/trace condition

Format : |.vCo
.VC1

RS-232C Channel 0: VCO

Channel 1: VC1

Function : Verifies the break/trace condition against the data
sent from the RS-232C line specified by .VCO or .VC1.
If they coincide, "Verify OK" will be displayed. If
they do not coincide, "Verify NG" will be displayed.

Example : To verify the break/trace condition input from RS-232C
channel 0:

BRK>.VCOS$S
Verify OK

2-5-53

UM IE-17K N E C

5.3.5 Coverage display command

(1) Dump coverage memory
DM (Dump coverage memory)

2-5-54

t.U{IEE:‘::l IJHIIEL17!$

.DM Dump coverage memory

Format : [(a, 8].DM
a: Start address a<B
g: End address @>P will result in error

Function : Dumps the contents of the coverage memory.

Description:

There are two types of coverages, PC (Program Counter) and DATA.

o For PC coverage, the number of executions for each program
address in the specified range will be counted. The number of
counts can be recorded from 0 to FFH. A count which is greater
than FFH is indicated as FFH.)

o For data coverage, the data memory status (write condition).
The meaning of each indication is as indicated below:

Indication Meaning
----- ... Indicates a bit which has never been written
* ... Indicates a bit to which 0 and 1 have been
written.
0 ... Indicates a bit to which only 0 has been written.
1 ... Indicates a bit to which only 1 has been written.
Example 1 : To display the contents of PC coverage:

If a and b are not specified, the contents of address
0 to 7FH will be displayed.

BRK>.DM$$
PC (1) / DATA (0) COVERAGE : ? 1&
ADDR 0 1 2 3 4 5 6 7 9 A B CDEF

7 " 2 - v o £

0000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0060 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0070 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

el
*13 €O

2-5-55

UM IE-17K t~'6l57‘::

Example 2: To display the contents of data coverage:

If @ and f are not specified, the contents of address
to 3FH will be displayed.
RF (register file) will be excluded from the coverage.

BRK>.DM$$
PC (7) / DATA (0) COVERAGE : ? 0¢
ADDR 0/8 1/9 2/a 3/B 4/C 5/D 6/E 7/F

1
0008 =-=-= =—== —mm= —mmm mmem mmem emem oo
0010 =m== mm== mmmm mmmmmmmm el oo
0018 === === —mm= mmmm mmemmmmm ammm oo
0020 ==== mmm= mmm= mmmm mmmm —mmm —mem oo
0028 === =-== —mmm mmmm mmmm mmmm mmmm oo
0030 -=-= —-== mmm= mmmm mmmm mmmm mmmm oo
0038 =--= === mmm= mmm= mmmm mmem —mom oo

Note: In some models, if @ and @ are not specified, an error may

occur.

2-5-56

N E C UM IE-17K

5.3.6 Program pattern generator (PPG) control commands

(1) Initialize PPG data

IG (Initialize PPGceeeveeseeseasas.. Data)
(2) Change PPG data

CG (Change PPG ..cceeceacacccecseaaesssss Data)
(3) Dump PPG data

DG (Dump PPGcceeucwn csscncee cenncns . Data)
(4) Execute/stop PPG, set PPG operation mode

EG (Execute PPG)
(5) sSave PPG data

SG (Save PPG ...eveeecssncscasasenaasss. Data)
(6) Load PPG data

LG (Load PPG ...veveasesacsacaanenaasnss. Data)
(7) verify PPG data

VG (Verify PPG ...cvieeseccccaceacesaaesss Data)

2-5-57

UM [E-17K | N E C

.IG Initialize PPG data

Format : (a, g, T).IG
a: Start address (0 to 1FFF) a<p
B : End address (0 to 1FFF) a>f will result in error
r: Data (0 to FFFF)

Function : Initializes the data in the address range @ - g to Data
T.
When clearing all PPG data (0 to 1FFF) to 0Os, it is not
necessary to specify a, £, and 7.

Example 1: To clear all PPG data to Os:

BRK>.IGS$$

Example 2: To initialize PPG data in the range from address 0 to
address FFH to 5555:

BRK>0,FF,555.IG$$

Note : .IG input will not be accepted during PPG execution.

2-5-58

NEC

UM IE-17K
.CG Change PPG data
Format : [«].CG
a: PPG data address for which the contents is to be
changed

Function :

Example 1:

Example 2:

Note :

Changes the PPG data of
not be specified.

To change PPG data from
BRK>.CG$$
0000:0000000000000000 -
0001:0000000000000000 -
BRK>

To change PPG data from
BRK>100.CG$$

0100 : 1001101110110011
0101 : 0000000000000000

Current data
Address

address a. If a is 0, a need

address 0:

1111111111111111y
3

address 100:

- 1001111111111111)
-5

[

Prompt

o Inputting a carriage return only will not change the
current data, and proceed to the next address.
o Inputting $ terminates this command.

o The DEL key deletes the character before the cursor.
If no character exists before the cursor, the DEL key
will not perform nothing.

2-5-59

UM IE-17K

NEC

o PPG data has the following meanings:
¢——— 16 bits ——
000 covveeea 0O
EPG probe PDO pin

PPG probe pin

PPG probe PD13 pin output data
PPG output stop control bit (1: Stop)

PPG output return control bit (1 makes return to

data address 0)

o When specifying the PPG stop address, set 2
successive stop control bits to 1.

o If .CG is executed during PPG execution, PPG will
stop.

o PPG data set to address OH will be output for a
period of twice the specified step rate.

o When setting the stop control bit, the interval
between the PPG execution start point and the first
stop point must be at least 3us.

2-5-60

N E C UM IE-17K

.DG Dump PPG data

Format : [a)],b.DG
a: Start address (0 to 1FFF) ag @
f: End address (0 to 1FFF) a> f will result in error

Function : Displays PPG data from address a to address £.
Example : To dump PPG data in the address range 0 - 10H:

BRK>0,10.DG$$

0000 : 0000000000000000
0001 : 0000000000000000
0002 : 0000000000000000
0003 : 0000000000000000
0004 : 0000000000000000
0005 : 0000000000000000
0006 : 0000000000000000
0007 : 0000000000000000
0008 : 0000000000000000
0009 : 0000000000000000
000A : 0000000000000000
000B : 0000000000000000
000C : 0000000000000000
000D : 0000000000000000
000E : 0000000000000000
000F : 0000000000000000
0010 : 0000000000000000

Npota « TF€ h{ed
cte 4L -

(2]

is ax
. isS X

- O

execution wi

2-5-61

UM IE-17K N E C

.EG Execute/stop PPG, set PPG operation mode
Format : .EG
Function : (1) Executes PPG.

(2) Stops PPG.
(3) Specifies the effective bit, step rate, as the PPG
operation mode.

Setting the effective bit

o When it is necessary to fix pin outputs PDO - PD13 to 0 (low
level), set the select bit to 0. To output as is, set it to 1.
The following shows how the select bits and the pins of the PPG

probe:

SELECT BIT: 001..........1
N
I PDO pin
PD13 pin
Fix to 0

O Step rate setting specifies the time taken to output 1
step of PPG data. It can be set from 1us to 13333us (decimal).
If 0 is selected as the step rate, 1 step will be 13333us.

Example

Note

To fix output pins 13 and 1 of the PPG to 0, and the
execution speed per step to 10ms/step:

BRK>.EGS$$

PPG RUN(1)/RESET(2)/SELECT(3):234

SELECT BIT: 0001111111111101%

STEP RATE : 100004

: o PPG data set to address OH will be output for a time
period of twice the specified step rate.

o If a RESET is executed during execution, the PPG will
stop and the effective bits specified by the SELECT
BIT will be set to high level.

2-5-62

N E C UM IE-17K

o If RUN is executed again during RUN, RUN will be

continuously executed.

o If SELECT is specified during RUN, the PPG will stop.

o When PPG is stopped by the stop control bit, the
effective PPG data of the address at which the stop
control bit was set will be output.

o The following formula gives an accurate execution
speed per step:

(Execution speed) = 1 x INT[4.9152 x (step rate)]*
4.9152 x 108

* INT[] is the maximum integer value which does not exceed
L 1.

2-5-63

UM IE-17K N E C

-.SGO .SG1 Save PPG data

Format :{.SGO}
.SG1

RS-232C Channel 0: SGO
Channel 1: SG1

Function : Outputs the PPG data to the RS-232C channel specified
by .SGO0 or .SG1 in the Intel-HEX format.

Example : To output the PPG data to channel 1:

BRK>.SG1$$

:100000000000000000000000000000000000000F0
:100010000000000000000000000000000000000E0
$100020000000000000000000000000000000000D0
$100030000000000000000000000000000000000C0
£100040000000000000000000000000000000000B0
$100050000000000000000000000000000000000A0

2-5-64

N E C UM IE-17K

.LGO .LG1 Load PPG data

Format : .LGO}
{.LG1

RS-232C Channel 0: LGO
Channel 1: LG1

Function : Inputs the PPG data from the RS-232C channel specified
by .LGO or .LG1.

Example : To input the PPG data from channel 0:

BRK>.LGOSS

2-5-65

UM IE-17K N E C

.VGO0 .VG1 Verify PPG data

Format H .VGO}
{.VG1

RS-232C Channel 0: VGO
Channel 1: VG1

Function : Verifies the PPG data against the Intel HEX format data
sent from the RS-232C line specified by .VGO or .VG1.
If they coincide, "Verify OK" will be displayed. If
they do not coincide, "Verify NG" will be displayed.

Example : To verify the PPG data input from RS-232C channel 0:

BRK>.VGO0S$$
Verify OK

2-5-66

N E C UM IE-17K

5.3.7 Help command

(1) Lists all commands (Help)

2-5-67

UM IE-17K N E C

.H Lists all commands (Help)

Format : .H
Function : Lists all commands.

Example : To list all commands:

BRK>.HS$$
.IP °CP .DP .FP .SPO .SP1 .LPO .LP1 .VPO .VPl .XSO0 .XS!
<< PROGRAM MEMORY COMMAND >>
.ID .CD .DD .D
<< DATA MEMORY COMMAND >>
.R .RN .BG .BK .CA .S
<< EMULATION COMMAND >>
.cC .CT .DC .DT .DM .SCO .SCl .LCO .LCl .vCo_ .VCl
<< BREAK , TRACE CONDITION COMMAND >>
.16 .CG .DG .EG .SGO .SGl .LGO .LGl .VGO .VGl
<< PULSE GENERATER COMMAND >>

2-5-68

NEC

UM IE-17K

2-5-69

5.3.8 Other commands

(1)

(3)

(4)

Define macro
U (Define macro)

Execute macro
M (Execute macro)

Dump macro
=C (Dump macro)

Loop
< > (Loop)

UM IE-17K N E C

u Define macro

Format : Ua command string
a: Macro name (0 to 9, A to Z)

Function : Defines macro. Macro name is expressed in one digit
from 0 to 9 or one character from A to 2Z.

Example : To define macro 2:
BRK>UZ.BK80.DD$$

This defines .BK80.DD as macro 2Z.

2-5-70

NEC

UM IE-17K
M Execute macro
Format T Mo
a: Macro name (0 to 9, A to 2)
Function : Executes macro defined by command U. Macro name is expressed
in one digit from 0 to 9 or one character from A to 2. -
Example : To defined macro which will break program execution, and dumps

the contents of the register file, and execute it:

DMA > _R$S

BRK > Ul .BK80 .DDSS
BRK > _RNSS

DMA >

RUN >

DMA > M1$$

ADDR INSTRUCTION

1800 00000 BREAK

1800 00000 OVERRUN

001D 074F0 NEXT

PC SP AR WR BR MP IX

001D S5 0000 1 0 **xx 070

PSW : DB CP cY Z IXE MPE JG
0 0 0 0 0 0 0

RP 0123456789ABCDEF

*6 4080000000000000

0080 : 25234561 7TAABCDE]1
0090 : 00034060 09ABCDEDO
00A0 : 01234561 09ABCDE?V
00BO : 0023 477F OO0OABCDE?2

2-5-711

UM IE-17K N E C

=C Dump macro

Format : =Ca
«: Macro.name -(0 to 9, A to 2Z)

Function : Dumps macro specified by a. Macro name is expressed in
one digit from 0 to 9 or one character from A to 2.

Example : To define macro 2 as ".R.RN" and dump its contents:

BRK>U2.R.RN$$
BRK>=C2$$.R.RN

2-5-72

NEC

UM IE-17K

< > Loop

Format : a<command string>

a: Number of loops

Function : Repeatedly executes the command string specified by < >

for a times.

Example : To repeat step and dump twice:

BRK>2<1.S50,

BR RP PC
0 *6 001D

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:

AbhOOOCOOCOO
cocococoooo
mMmwoooocow

BR RP PC
0 *6 001E

0000:
0010:
0020:
0030:
0040:
0050:
0060:
0070:

S HhOO0OO0OO0OO
coo0ooO0OO0O0OO0OOo
mMmowooooow

BRK>

7F.DD>$$
TNSTRUCT ION
074F0
86000 0
00000 0
00000 0
00000 0
00000 ©
00000 0
00000 0
00000 1
INSTRUCTION
10021
86000 0
00000 0
00000 0
00000 ©
00000 O
00000 0
00000 0
00000 1

occoo0O0O0O0OO0

OO0 o0O0OO0CO0OO0OO

cooco0oo0cOo0oO0O0OOoO

o000 O0OO0OOCO

NoOoOOoOOOOOO

NooOoOOOOOOCO

coco0oO0CO0OO0O0OOoO

- R-X--N-N-N--]
coOoOo0O0OO0O0OO0CO

00000000

Noooocoooco

Noocoocoooo

(- - -~ - = Y — =]

00000000

Note: o When the number of loops & is not specified, the number
232_1 will be selected.

o To prevent errors, each command used in the command string
must be written without abbreviating.

2-5-73

N E C UM IE-17K

Chapter 6 Programmable Pulse Generator (PPG)

The IE-17K has a 14-bit parallel PPG function. The output pattern
can be set up to 8192 steps-and the step rate can be specified
approximately from 1us to 13333us in 1us steps.

6.1 Displaying, Modifying PPG Data

PPG data can be displayed or changed using the .DG command or the
.CG command. When the .DG or .CG command is executed, the PPG
stops its operation.

Example 1: To display the PPG data from address 0 to address 3:

BRK>0,3.DGSS$

0000 : 0000000000000000
0001 : 0000000000000000
0002.: 0000000000000000
0003 : 0000000000000000

RX>

Example 2: To change the PPG data of address 0 to
'0011111111111111 '

BRE>. CGSS

0000 : 0000000000000000 - 0Q]]]]1]}]]]]]][L
0001 : 0000000000000000 ~ $

BRK>

2-6-1

UM IE-17K

NEC

6.2 Setting the Step Rate

The step rate can be changed by selecting SELECT(3) of the .EG

command. When the SELECT(3)
Each of the 14 output pins,’
effective or not effective.
output high levels when the

is selected the PPG stops.

can be individually specified as
Pins specified as effective bits
PPG is stopped, and output PPG data

when the PPG is in operation.

Pins not specified as effective bits outputs low levels regardless
of the condition of the PPG data.

The step rate can be specified approximately from 1us to 13333us
in l1us steps.

One step is approximately lus. However, if the step rate is set to
a small value, 1 step may be shorter than 1lus.

Example : To select bits 0 to 7 as effective, and set the step
rate to 100US/step:

BRK > LEGSS

PSG RUN(1) / RESET(2) / SELECT(3) : ? 3 %
SELECT BIT : 0000000011111111 ¥

STEP RATE : 100 ¥

BRK >

2-6-2

NEC

6.3 Executing PPG, Stopping PPG
The PPG execution can be started/stopped using the .EG command.

PPG execution can be started only when the PPG is in the stop
state.

UM IE-17K

Example 1: To start PPG execution:

BRK > _EGSS
PSG RUN(1) / RESET(2) / SELECT(3)
BRK >

E

Example 2: To stop PPG execution:

BRK > LEGSS

PSG RUN(1) / RESET(2) / SELECT(3) :
BRK >

E_

2-6-3

UM IE-17K N E C

6.4 Notes On Using the PPG
PPG data set to address OH will be output for a period of twice
the specified step rate.

When stopping the PPG using the PPG stop control bit, set 2
successive stop control bits to 1.

Example:

0000:0000000000000000 Qutput waveform
0001:0011111111111111
0002:0100000000000000
0003:0100000000000000 Address o Tif3l
0000:0000000000000000 Qutput waveform
0001:0011111111111111
0002:0000000000000000 e 1w A e Bl
0003:1011111111111111 Address!| o l1l2l3l o Tal2l

2-6-4

NEC

UM IE-17K

6.5 PPG Application Example

The output data from the uPD6122G remote control transmitter IC
can be simulated by the PPG. When the step rate is set to 563,

106 to 138 steps of data can be transmitted.
The following figures show the output wave-form of the uPD6122G

and a part of the pulse generator data.

Example of output wave-form

Custom code

Data code

Data code

16 8 Custom code
Number of steps
Leader code 16 ~ 32
Sectional
enlargement

16 ~ 32

Number of step t

Data

e e

2-6-5

48

NEC

UM IE-17K

PPG data (a part)

u
. -~
[")
) Q.
0 [
s)
v] .
© H =
i o -
o m. = =
-
w o o
@ ~ [] [Al
T o g ~ L+l
o > (o} o u o
0 o o > o o o
— o n «a
- N~ €
0 o [o w u
o o T 3 FYRS e
] ° 0 w oA el
v < Q ~ 3 m a
o~ - O - -~
\ 4\ /—\/_.\ /_

[1 T
it vt vl vt et vl v A L 4 O O O OO0 000 —O—~O 00
ittt vt e vt A 1 = O O 0 0 0000 —=P—O 00
At vt v A A et 4t et 4 1 O O O OO0 OO0 OO —O 0O
it vl it et it vt L 1 1 O O O OO0 000 —~0O—~0 00
vt vt vt vt vd v vl v A A 4 =~ O O O OO0 OO0 O ~O—~O 00
it i vt vt vt vt 7=t vt 4 v =t = 4 = O O O OO0 00O —~O0O—~0 00
—t vt vt vt vt vk vl A A L H = O O OO0 000 OO —~O000
Tt vt vt d 7t vl e vl et =t +d et vt = O O O O O OO0 OO ~0 00O
vt vt vt vt =t vd 7t et vt =+t v v = O O O OO0 OO0 O ~O—~000
it v vt vt et vt et 1 O O OO0 00000 ~00O0
it vt vt vt vt vk 3k vk 74 4 v 4 4 4 O O O OO0 OO0 OO —OO0O0
—t et vt vt v e+l vt v v+ 4 1 O O OO0 0000 —~O~0 00
At vt v vt vt e vt v A O O OO0 000 OO —~O0 00
vt v v vt v vt vt v e+t = O O O OO0 00O —~O—O0O 00
0000000000000 00000000O00000000
[e]olelelololeololelelalalololololelelelololoalolelololelole)
O~ INON 0N KMOAMILO ~NMIHN O~ 0D MO
[elelelelelelololelelololeleleolololololololololalalalalale)
0000000000000 000000000O0000000
0000000000000 00000O0O0O0O0O0O00O0000

2-6-6

N E C UM IE-17K

Chapter 7 Program Execution

The program can be executed in one the following ways:
(1) Real-time emulation

(2) Single-step emulation

7.1 Real-Time Emulation

The .RN command is used to execute the program with the same speed
as the actual product. Break can be generated with arbitrary
condition by setting break point. Execution can be regardlessly
stopped by executing the .BK command.

Example 1: To execute after resetting the CPU:

BRK > _RS$$
BRK > _RNSS
RUN >

Example 2: To resume after interrupting real-time emulation:

RUN > _BKSS

ADDR INSTRUCTION

0027 1E7F2 BREAK

0028 0C026 OVERRUN

0029 070E0 NEXT

PC SP AR WR BR MP IX

00F2 0 0000 * * kkk dkkk

PSW : DB CP 3 4 Z IXE MPE JG
0 1 0 1 * * 0

RP 0123456789ABCDEF

*0 8D98DY99999FFADID

BRK > _RNSS

RUN >

2-7-1

UM IE-17K N E C

7.2 Setting Break Points

By setting break points, break can be generated with arbitrary
condition. Break conditions can be program memory address, data
memory address, writing data to the data memory, change of the
logic analyzer probe pin status, etc. Break conditions can be set
so that the program execution can be stopped when two or more
break conditions are simultaneously satisfied or when two or more
break conditions are successively satisfied.

Example: To generate break when the program counter address
becomes 00FOH:

BRK > ,CCSS$
A) LEVEL (1, 2) : 2 1.4
B)UNIT (0 - 3) : 2 0
CATG (C - L) : 2¢C}
C) CONDITION AND(1) / OR(0) : 2 %
D) PROG ADDR UPPER : FFFF ?
PROG ADDR LOWER : 0000 2 QQF0 {
MATCH (1) / UNMATCH(0) : 0 2 1 4
E) RELEASE DATAMEMORY FROM AND YES(1) / NO(0) : 0 ? §

BRK > _CCSS

A) LEVEL(1, 2) 1224

B) LEVEL2 : 0123
DEPTH-3 : 1101 2 4
DEPTH-2 21101 2 4
DEPTH-1 : 1101 2 4
DEPTH-0 : 1101 2 1000 ¥

INITIAL DEPTH : 0 ? &

BRK > _RS$$

BRK > _RNSS

BRK > LBKSS

ADDR INSTRUCTION

00F0 1D069 BREAK

00F1 1D059 OVERRUN

00F2 1D045 NEXT

PC SP AR WR BR MP IX

00F2 0 0000 * *ookkk ok

PSW : DB CP CcY Z IXE MPE JG
0 0 0 0 * * 0

RP 0123456789ABCDEF

*0 0000099990008005

BRK >

2-7-2

N E C UM IE-17K

7.3 Single-Step Emulation
This mode is used to check the process flow by executing the

program one step at a time.

Example 1: To execute one instruction:

BRK>, §$$
BR RP PC INSTRUCTION
x x0 0034 0C03D SS

BRK>

The instruction displayed at address 0034H has not been executed.

The number of steps can be specified by specifying a numeric value
before the .S command.

Example 2: To execute two instructions at addresses 33H and 34H:

BRK>3 . 588
BR RP -PC INSTRUCTION
x x0 0034 0C03D
* x0 003D 11001 S$

BRE>

The next instruction can be executed by inputting a space after
executing the .S command.

Example 3: To execute two instructions at addresses 33H and 34H:

BRK>33,CAS. 5SS
BR RP PC INSTRUCTION

x x0 0034 0C03D ceeen Inputting a space
= x0 003D 11001 $$ executes one step.
BRK>

2-7-3

N E C UM IE-17K

Chapter 8 Programming the PROM for the SE Board

The PROM file format HEX code of the program (modified by the IE-
17K) which is output from the AS17K can be output to line 0 or 1.
The PROM can be programmed for the SE board by connecting the PROM
programmer to line 1.

2-8-1

NEC

UM IE-17K

Chapter 9

Error Messages

The IE-17K generates an error message when a command is

incorrectly input or a hardware problem occurs.

9.1

Error Messages Related to Commands

A command error message is displayed when the command name is

incorrectly input or the number of arguments are not correct. The

following

(1) ?MLA MISSING <
This message is displayed when
than the number of '>'s.

(2) 7?MRA MISSING >
This message is displayed when
than the number of '<'s.

(3) ?MLP MISSING (
This message is displayed when
than the number of ')'s.

(4) ?MLP MISSING)
This message is displayed when
than the number of '('s.

(5) ?MNF MACRO COMMAND NOT FOUND
This message is displayed when

(6)

(7)

begins with '.' does not exist
?NVQ NO VALUE IN Q-REGISTER

This message is displayed when
the contents of the Q register

contains nothing.
2SYN INVALID SYNTAX

This message is displayed when
indicated in 1

2-9-1

lists the error messages related to commands.

the number of '<'s is fewer
the number of '>'s is fewer
the number of '('s is fewer
the number of ')'s is fewer
a character string which

as a macro command.

an attempt is made to execute

as a macro when the Q register

an syntax error other than

- 6 above is found.

UM IE-17K N E C

(8) ?FAP FAIL TO ACCESS PSG
This message is displayed when a verify error is generated

when writing pulse patter generator data.

(9) ?2IPE INPUT ERROR
This message is displayed when an invalid value is set for
the .CC command.

(10) ?INA ILLEGAL NUMBER OF ARGUMENTS
This message is displayed when the number of arguments for
the macro command is insufficient.

(11) 2IVA INVALID ARGUMENT
This message is displayed when the argument value is illegal.

(12) ?POS INVALID ADDRESS
This message is displayed when an address which exceeds the
program memory address range of the product is specified.

(13) ?RSE CPU RESET ERROR
This message is displayed when an attempt is made to execute
a command which should not be carried out during emulation
of the program.

(14) 2RNE CPU RUN ERROR
This message is displayed when an attempt is made to execute
a command which should not be carried out during emulation
of the program.

(15) ?RTE RUN ERROR
This message is displayed when an attempt is made to execute

a command which should not be carried out during emulation
of the program.

(16) 2WRE WRITE ERROR

This message is displayed when a verify error occurs when
writing to the memory.

2-9-2

N E C UM IE-17K

9.2

Hardware Error

A hardware error is displayed when the IE-17K malfunctions during

program execution. The following describes these hardware error
messages.

(1)

(3)

(4)

(5)

(6)

SYSTEM REGISTER ACCESS ERROR

This message is displayed when an attempt is made to access
bit which is not mounted in system registers, but is located
in the AR register.

STACKOVER/UNDER FLOW

This message is displayed when the stack pointer overflows or
underflows.

RAM NOT INITIALIZE

This message is displayed when an instruction to read data
memory is executed a data memory (except port) to which
nothing has been written or an initial value has not been
determined.

ILLEGAL RAM WRITE

This message is displayed when an attempt is made to write to
an data memory which does not exist.

?2I0S INVALID OPTION SWITCH AT 0000

This message is displayed when the option switch
specification differs from that of the option switch on the
SE board, when the program is loaded to, or executed by the
IE-17K or the program is executed.

2ISE INVALID SE BOARD NUMBER [00 - 00]

This message is displayed when the device file used for the
assembler differs from the SE board when the program is
loaded to executed by the IE-17K or the program is executed.
This message may also be displayed when the SE board is not
properly installed. The left side number indicates the SE

board number, and the right side number indicates the number
contained in the device file.

2-9-3

UM IE-17K N E C

(7) 2IDI INVALID DEVICE ID NUMBER [00 - 00]
This message is displayed when the device file used for the

assembler differs from the device on the SE board when the
program is loaded to the IE-17K.

This message may also be displayed when the device is not
properly mounted on the SE board. The left side number
indicates the device number on the SE board, and the right
side number indicates the number contained in the device
file.

(8) --- NO SWITCH OPTION ---
This message is displayed when the option information is not
successfully loaded during loading of the program to the
IE-17K.

(9) PC ERROR!
This message is displayed when the program counter does not
operate due to a malfunction on the SE board.

The following error messages (10 - 18) will be displayed when an
error is detected during execution of the self-diagnostic test.
The test performed by the IE-17K upon power on or reset. All of
these messages indicates hardware malfunction which requires
immediate repair.

(10) MEMORY ERROR --> 0000:0000 - 7000:FFFF
This message is displayed when the memory used by the IE-17K
malfunctions.

(11) MEMORY ERROR --> E000:0000 - EOQOOO:FFFF
This message is displayed when the memory used by the pulse
generator malfunctions.

(12) DEVICE ERROR =--> PTC (UPD71054) #0

This message is displayed when programmable timer 0
(uPD71054) malfunctions.

2-9-4

N E C UM IE-17K

(13) DEVICE ERROR --> PTC (UPD71054) #1
This message is displayed when programmable timer 1
(uPD71054) malfunctions.

(14) DEVICE ERROR --> PIU (UPD71055) #0
This message is displayed when parallel interface 0
(uPD71055) malfunctions.

(15) DEVICE ERROR --> PIU (UPD71055) #1

This message is displayed when parallel interface 1
(uPD71055) malfunctions.

(16) DEVICE ERROR --> SCU (UPD71051) #0
This message is displayed when serial control unit 0
(uPD71051) malfunctions.

(17) DEVICE ERROR --> SCU (UPD71051) #1
This message is displayed when serial control unit 1
(uPD71051) malfunctions.

(18) DEVICE ERROR --> ICU (UPD71059)

This message is displayed when the interrupt controller
(uPD71059) malfunctions.

The following messages (19) to (24) will be displayed when the CPU
of the IE-17K malfunctions, e.g., CPU runaway.

(19) << DIVIDE BY ZERO »>>
When division by zero is attempted.

(20) << CHECK FIELD »>>
When memory boundary is exceeded.

(21) << SINGLE STEP »>>

When a single step is executed.

(22) << BREAK MODE »>
When a break instruction is executed.

2-9-5

NEC

UM IE-17K

(23) << OVERFLOW >>
When an overflow has occurred during operation.

(24) << NMI >>»
When NMI is generated.

2-9-6

NEC Customer Services

NEC’s Commitment to
Information

Our offices throughout Europe are
always at your service for comprehen-
sive support. Here are some of the
technical services we provide:

® INSECT

® Seminars

® Update service

® Hotline

@ Mailing list

® University program

INSECT

INformation System and Electronic
CaTalog.

This is an on-line information ser-
vice. Via a telephone link you can call
up the latest data on all VLSI devices
available from NEC. This includes
enhancements, news and the most
recent application know-how.

The service is free to our custom-
ers and other interested parties. For a
menu-driven guest session, you can
dial in to INSECT via the international
packet switching network - in Ger-
many this is DATEX-P - using of
these numbers
45 21 10 13 020/030
and responding to the request for
USERNAME and PASSWORD simply
with "customer”.

Seminars

No-one is more aware than NEC of
the difference that a brief intensive
training course can make to your mas-
tery of advanced and often complex
devices. We hold regular workshops
and seminars at local NEC offices, in
our Dusseldorf headquarters, or on
customer premises. For information
on NEC workshops and seminars,
please contact your nearest office.

Update Service

When you buy an evaluation package
from NEC, you become automatically
entitied to one year's free updates for
both hardware and software. All up-
dates reach you fast and reliably via a
courier service. In a field where rapid
changes are the norm, you can be
thus be sure of working with the most
up-to-date development tools.

Hotlines

NEC's offices located throughout
Europe are responsible for technical
support and customer services. On
the back cover of this brochure you
can check which office is most
convenient for you to contact. You are
also welcome to contact our European
headquarters in Disseldorf directly.

Mailing list

Our engineering staff produces
frequent additions to the available
technical documentation in the form of
application notes, product news and
technical letters. If you would like to be
included on our mailing list for this
documentation, please inform us.

University Program

Many of our products, because of their
complexity and dedicated application
support through EB tools, are interest-
ing subjects for graduate studies. NEC
is always ready to discuss this possi-
bility.

	02020923 nec -----------------.tif
	02020924.tif
	02020925.tif
	02020926.tif
	02020927.tif
	02020928.tif
	02020929.tif
	02020930.tif
	02020931.tif
	02020932.tif
	02020933.tif
	02020934.tif
	02020935.tif
	02020936.tif
	02020937.tif
	02020938.tif
	02020939.tif
	02020940.tif
	02020941.tif
	02020942.tif
	02020943.tif
	02020944.tif
	02020945.tif
	02020946.tif
	02020947.tif
	02020948.tif
	02020949.tif
	02020950.tif
	02020951.tif
	02020952.tif
	02020953.tif
	02020954.tif
	02020955.tif
	02020956.tif
	02020957.tif
	02020958.tif
	02020959.tif
	02020960.tif
	02020961.tif
	02020962.tif
	02020963.tif
	02020964.tif
	02020965.tif
	02020966.tif
	02020967.tif
	02020968.tif
	02020969.tif
	02020970.tif
	02020971.tif
	02020972.tif
	02020973.tif
	02020974.tif
	02020975.tif
	02020976.tif
	02020977.tif
	02020978.tif
	02020979.tif
	02020980.tif
	02020981.tif
	02020982.tif
	02020983.tif
	02020984.tif
	02020985.tif
	02020986.tif
	02020987.tif
	02020988.tif
	02020989.tif
	02020990.tif
	02020991.tif
	02020992.tif
	02020993.tif
	02020994.tif
	02020995.tif
	02020996.tif
	02020997.tif
	02020998.tif
	02020999.tif
	02021000.tif
	02021001.tif
	02021002.tif
	02021003.tif
	02021004.tif
	02021005.tif
	02021006.tif
	02021007.tif
	02021008.tif
	02021009.tif
	02021010.tif
	02021011.tif
	02021012.tif
	02021013.tif
	02021014.tif
	02021015.tif
	02021016.tif
	02021017.tif
	02021018.tif
	02021019.tif
	02021020.tif
	02021021.tif
	02021022.tif
	02021023.tif
	02021024.tif
	02021025.tif
	02021026.tif
	02021027.tif
	02021028.tif
	02021029.tif
	02021030.tif
	02021031.tif
	02021032.tif
	02021033.tif
	02021034.tif
	02021035.tif
	02021036.tif
	02021037.tif
	02021038.tif
	02021039.tif
	02021040.tif
	02021041.tif
	02021042.tif
	02021043.tif
	02021044.tif
	02021045.tif
	02021046.tif
	02021047.tif
	02021048.tif
	02021049.tif
	02021050.tif
	02021051.tif
	02021052.tif
	02021053.tif
	02021054.tif
	02021055.tif
	02021056.tif
	02021057.tif
	02021058.tif
	02021059.tif
	02021060.tif
	02021061.tif
	02021062.tif
	02021063.tif
	02021064.tif
	02021065.tif
	02021066.tif
	02021067.tif
	02021068.tif
	02021069.tif
	02021070.tif
	02021071.tif
	02021072.tif
	02021073.tif
	02021074.tif
	02021075.tif
	02021076.tif
	02021077.tif
	02021078.tif
	02021079.tif
	02021080.tif
	02021081.tif
	02021082.tif
	02021083.tif
	02021084.tif
	02021085.tif
	02021086.tif
	02021087.tif
	02021088.tif
	02021089.tif
	02021090.tif
	02021091.tif
	02021092.tif
	02021093.tif
	02021094.tif
	02021095.tif
	02021096.tif
	02021097.tif
	02021098.tif
	02021099.tif
	02021100.tif
	02021101.tif
	02021102.tif
	02021103.tif
	02021104.tif
	02021105.tif
	02021106.tif
	02021107.tif
	02021108.tif
	02021109.tif
	02021110.tif
	02021111.tif
	02021112.tif
	02021113.tif
	02021114.tif
	02021115.tif
	02021116.tif
	02021117.tif
	02021118.tif
	02021119.tif
	02021120.tif
	02021121.tif
	02021122.tif
	02021123.tif
	02021124.tif
	02021125.tif
	02021126.tif
	02021127.tif
	02021128.tif
	02021129.tif
	02021130.tif
	02021131.tif
	02021132.tif
	02021133.tif
	02021134.tif
	02021135.tif
	02021136.tif
	02021137.tif
	02021138.tif
	02021139.tif
	02021140.tif
	02021141.tif
	02021142.tif
	02021143.tif
	02021144.tif
	02021145.tif
	02021146.tif
	02021147.tif
	02021148.tif
	02021149.tif
	02021150.tif
	02021151.tif
	02021152.tif
	02021153.tif
	02021154.tif
	02021155.tif
	02021156.tif
	02021157.tif
	02021158.tif
	02021159.tif
	02021160.tif
	02021161.tif
	02021162.tif
	02021163.tif
	02021164.tif
	02021165.tif
	02021166.tif
	02021167.tif
	02021168.tif
	02021169.tif
	02021170.tif
	02021171.tif
	02021172.tif
	02021173.tif
	02021174.tif
	02021175.tif
	02021176.tif
	02021177.tif
	02021178.tif
	02021179.tif
	02021180.tif
	02021181.tif
	02021182.tif
	02021183.tif
	02021184.tif
	02021185.tif
	02021186.tif
	02021187.tif
	02021188.tif
	02021189.tif
	02021190.tif
	02021191.tif
	02021192.tif
	02021193.tif
	02021194.tif
	02021195.tif
	02021196.tif
	02021197.tif
	02021198.tif
	02021199.tif
	02021200.tif
	02021201.tif
	02021202.tif
	02021203.tif
	02021204.tif
	02021205.tif
	02021206.tif
	02021207.tif
	02021208.tif
	02021209.tif
	02021210.tif
	02021211.tif
	02021212.tif
	02021213.tif
	02021214.tif
	02021215.tif
	02021216.tif
	02021217.tif
	02021218.tif
	02021219.tif
	02021220.tif
	02021221.tif
	02021222.tif
	02021223.tif
	02021224.tif
	02021225.tif
	02021226.tif
	02021227.tif
	02021228.tif
	02021229.tif
	02021230.tif
	02021231.tif
	02021232.tif
	02021233.tif
	02021234.tif
	02021235.tif
	02021236.tif
	02021237.tif
	02021238.tif
	02021239.tif
	02021240.tif
	02021241.tif
	02021242.tif
	02021243.tif
	02021244.tif
	02021245.tif
	02021246.tif
	02021247.tif
	02021248.tif
	02021249.tif
	02021250.tif
	02021251.tif
	02021252.tif
	02021253.tif
	02021254.tif
	02021255.tif
	02021256.tif
	02021257.tif
	02021258.tif
	02021259.tif
	02021260.tif
	02021261.tif
	02021262.tif
	02021263.tif
	02021264.tif
	02021265.tif
	02021266.tif
	02021267.tif
	02021268.tif
	02021269.tif
	02021270.tif
	02021271.tif
	02021272.tif
	02021273.tif
	02021274.tif
	02021275.tif
	02021276.tif
	02021277.tif
	02021278.tif
	02021279.tif
	02021280.tif
	02021281.tif
	02021282.tif
	02021283.tif
	02021284.tif
	02021285.tif
	02021286.tif
	02021287.tif
	02021288.tif
	02021289.tif
	02021290.tif
	02021291.tif
	02021292.tif
	02021293.tif
	02021294.tif
	02021295.tif
	02021296.tif
	02021297.tif
	02021298.tif
	02021299.tif
	02021300.tif
	02021301.tif
	02021302.tif
	02021303.tif
	02021304.tif
	02021305.tif
	02021306.tif
	02021307.tif
	02021308.tif
	02021309.tif
	02021310.tif
	02021311.tif
	02021312.tif
	02021313.tif
	02021314.tif
	02021315.tif
	02021316.tif
	02021317.tif
	02021318.tif
	02021319.tif
	02021320.tif
	02021321.tif
	02021322.tif
	02021323.tif
	02021324.tif
	02021325.tif
	02021326.tif
	02021327.tif
	02021328.tif
	02021329.tif
	02021330.tif
	02021331.tif
	02021332.tif
	02021333.tif
	02021334.tif
	02021335.tif
	02021336.tif
	02021337.tif
	02021338.tif
	02021339.tif
	02021340.tif
	02021341.tif
	02021342.tif
	02021343.tif
	02021344.tif
	02021345.tif
	02021346.tif
	02021347.tif
	02021348.tif
	02021349.tif
	02021350.tif
	02021351.tif
	02021352.tif
	02021353.tif
	02021354.tif
	02021355.tif
	02021356.tif
	02021357.tif

